中考数学重难点突破-专题17 手拉手相似模型(原卷+解析版)


【重难点突破】中考数学压轴题解题模型精讲与真题演练
专题17 手拉手相似模型
模型解读 1
常见类型讲解 1
1、任意三角形 2
2、直角三角形 2
3、等边三角形与等腰直角三角形 2
真题演练 3
巩固练习 4
压轴真题强化 5
手拉手相似模型(手拉手旋转型)定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
1、任意三角形
如图,∠BAC=∠DAE=,;
结论:△ADE∽△ABC,△ABD∽△ACE;.
2、直角三角形
如图,,(即△COD∽△AOB);
结论:△AOC∽△BOD;,AC⊥BD,.
3、等边三角形与等腰直角三角形
如图,M为等边三角形ABC和DEF的中点;
结论:△BME∽△CMF;.
如图,△ABC和ADE是等腰直角三角形;
结论:△ABD∽△ACE.
(2022·山东烟台·中考真题)
(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
(2021·四川乐山·中考真题)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.
(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE=   ;
(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.
①在图2中补全图形;
②探究CD与BE的数量关系,并证明;
(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.
某校数学活动小组探究了如下数学问题:
(1)问题发现:如图1,中,,.点P是底边BC上一点,连接AP,以AP为腰作等腰,且,连接CQ、则BP和CQ的数量关系是______;
(2)变式探究:如图2,中,,.点P是腰AB上一点,连接CP,以CP为底边作等腰,连接AQ,判断BP和AQ的数量关系,并说明理由;
(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为,,求正方形ABCD的边长.
一、单选题
1.(2023·四川宜宾·中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:
①;②;
③当点在的延长线上时,;
④在旋转过程中,当线段最短时,的面积为.
其中正确结论有(  )

A.1个 B.2个 C.3个 D.4个
二、填空题
2.(2023·四川遂宁·中考真题)如图,以的边、为腰分别向外作等腰直角、,连结、、,过点的直线分别交线段、于点、,以下说法:①当时,;②;③若,,,则;④当直线时,点为线段的中点.正确的有 .(填序号)

三、解答题
3.(2024·山东泰安·中考真题)如图1,在等腰中,,,点,分别在,上,,连接,,取中点,连接.
(1)求证:,;
(2)将绕点顺时针旋转到图2的位置.
①请直接写出与的位置关系:___________________;
②求证:.
4.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
5.(2023·黑龙江齐齐哈尔·中考真题)综合与实践
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.

(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;
(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;
(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;
(4)实践应用:正方形中,,若平面内存在点满足,,则______.
6.(2024·江西·中考真题)综合与实践
如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.
特例感知
(1)如图1,当时,与之间的位置关系是______,数量关系是______;
类比迁移
(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.
拓展应用
(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.
①求y与x的函数表达式,并求出y的最小值;
②当时,请直接写出的长度.
精品试卷·第 2 页 (共 2 页)
第4页(共8页)
【重难点突破】中考数学压轴题解题模型精讲与真题演练
专题17 手拉手相似模型
模型解读 1
常见类型讲解 1
1、任意三角形 2
2、直角三角形 2
3、等边三角形与等腰直角三角形 2
真题演练 3
巩固练习 6
压轴真题强化 8
手拉手相似模型(手拉手旋转型)定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
1、任意三角形
如图,∠BAC=∠DAE=,;
结论:△ADE∽△ABC,△ABD∽△ACE;.
2、直角三角形
如图,,(即△COD∽△AOB);
结论:△AOC∽△BOD;,AC⊥BD,.
3、等边三角形与等腰直角三角形
如图,M为等边三角形ABC和DEF的中点;
结论:△BME∽△CMF;.
如图,△ABC和ADE是等腰直角三角形;
结论:△ABD∽△ACE.
(2022·山东烟台·中考真题)
(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
【答案】(1)见解析
(2)
(3)①;②
【详解】(1)证明:∵△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)解:∵△ABC和△ADE都是等腰直角三角形,
,∠DAE=∠BAC=45°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD∽△CAE,

(3)解:①,∠ABC=∠ADE=90°,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,,
∴∠CAE=∠BAD,
∴△CAE∽△BAD,

②由①得:△CAE∽△BAD,
∴∠ACE=∠ABD,
∵∠AGC=∠BGF,
∴∠BFC=∠BAC,
∴sin∠BFC.
(2021·四川乐山·中考真题)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.
(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE=   ;
(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.
①在图2中补全图形;
②探究CD与BE的数量关系,并证明;
(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.
【答案】(1)30°;(2)①见解析;②;见解析;(3),见解析
【详解】解:(1)∵,
∴△ABC是等边三角形
∴∠B=60°
∵点关于直线的对称点为点
∴AB⊥DE,

故答案为:;
(2)①补全图如图2所示;
②与的数量关系为:;
证明:∵,.
∴为正三角形,
又∵绕点顺时针旋转,
∴,,
∵,,
∴,
∴,
∴.
(3)连接.
∵,,∴.
∴.
又∵,
∴,
∴.∵,∴,
∴,
∴,
∴,.
∵,
∴.
又∵,
∴.
某校数学活动小组探究了如下数学问题:
(1)问题发现:如图1,中,,.点P是底边BC上一点,连接AP,以AP为腰作等腰,且,连接CQ、则BP和CQ的数量关系是______;
(2)变式探究:如图2,中,,.点P是腰AB上一点,连接CP,以CP为底边作等腰,连接AQ,判断BP和AQ的数量关系,并说明理由;
(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为,,求正方形ABCD的边长.
【答案】(1)
(2)
(3)6
【详解】(1)解:∵是等腰直角三角形,,
在中,,,
∴,,
∴.
在和中, ,
∴,
∴;
(2)解:结论:,
理由如下:∵是等腰直角三角形,中,,,
∴,.
∵,
∴,
∴,
∴,
∴;
(3)解:连接,如图所示,
∵四边形与四边形是正方形,与交于点,
∴和都是等腰直角三角形,
∴,.
∵,
∴,
∴,
∴.
∵,
∴.
在中,,设,则,
又∵正方形的边长为,
∴,
∴,
解得(舍去),.
∴正方形的边长为6.
一、单选题
1.(2023·四川宜宾·中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:
①;②;
③当点在的延长线上时,;
④在旋转过程中,当线段最短时,的面积为.
其中正确结论有(  )

A.1个 B.2个 C.3个 D.4个
【答案】D
【详解】解:∵和是以点为直角顶点的等腰直角三角形,
∴,
∴,
∴,
∴,,故①正确;
设,
∴,
∴,
∴,故②正确;
当点在的延长线上时,如图所示

∵,,


∵,.
∴,

∴,故③正确;
④如图所示,以为圆心,为半径画圆,

∵,
∴当在的下方与相切时,的值最小,
∴四边形是矩形,
又,
∴四边形是正方形,
∴,
∵,
∴,
在中,
∴取得最小值时,

故④正确,
故选:D.
二、填空题
2.(2023·四川遂宁·中考真题)如图,以的边、为腰分别向外作等腰直角、,连结、、,过点的直线分别交线段、于点、,以下说法:①当时,;②;③若,,,则;④当直线时,点为线段的中点.正确的有 .(填序号)

【答案】①②④
【详解】解:①当时,是等边三角形,


∵等腰直角、,


∴;故①正确;
②∵等腰直角、,
∴,


∴;故②正确;
④如图所示,作直线于点, 过点作于点,过点作于点,

∵,
∴,
又,

又∵,

同理得,,
∴,,,
∵,,,
∴,
∴,即是的中点,故④正确,
∴,
设,则
在中,
在中,


解得:
∴,
∴,


在中,
∴,故③错误
故答案为:①②④.
三、解答题
3.(2024·山东泰安·中考真题)如图1,在等腰中,,,点,分别在,上,,连接,,取中点,连接.
(1)求证:,;
(2)将绕点顺时针旋转到图2的位置.
①请直接写出与的位置关系:___________________;
②求证:.
【答案】(1)见解析
(2)①;②见解析
【详解】(1)证明:在和中,
,,,

,.
是斜边的中点,








(2)解:①;
理由如下:延长到点,使,连接,延长到,使,连接并延长交于点.
,,,

,,







在和中,
,,,


是中点,是中点,
是中位线,






故答案为:;
②证明: ∵,



4.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
【答案】(1)的值为;(2);(3)直角三角形的面积为4或16或12或.
【详解】(1)∵,,.
∴,
∴,,
∴即,

∴,
∴.
(2)连接,延长交于点Q,根据(1)得,
∴,
∵是中线
∴,
∴,
∵,
∴即,
∴,
∴,
∵,
∴,
∴,
∴四边形是平行四边形,

∴四边形矩形,
∴,
∴,
∴,
∴,
设,则,
∵,
∴,
∴,
∵,
∴,
解得;
∴,,
∵,
∴,
∴,
∴,
∴,
解得.
(3)如图,当与重合时,此时,此时是直角三角形,
故;
如图,当在的延长线上时,此时,此时是直角三角形,
故;
如图,当时,此时是直角三角形,
过点A作于点Q,
∵,
∴,
∵,,,
∴四边形是矩形,
∴,
∴,
故;
如图,当时,此时是直角三角形,过点A作于点Q,交于点N,
∴,,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
解得;
故.
综上,直角三角形的面积为4或16或12或.
5.(2023·黑龙江齐齐哈尔·中考真题)综合与实践
数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.

(1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系:______,______;
(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;
(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.则,,之间的数量关系:______;
(4)实践应用:正方形中,,若平面内存在点满足,,则______.
【答案】(1),
(2),,证明见解析
(3)
(4)或
【详解】(1)解:∵,
∴,
又∵,,
∴,
∴,
设交于点,


∴,
故答案为:,.
(2)结论:,;
证明:∵,
∴,即,
又∵,,

∴,
∵,,
∴,
∴,
(3),理由如下,
∵,
∴,
即,
又∵和均为等腰直角三角形
∴,
∴,
∴,
在中,,
∴,
∴;
(4)解:如图所示,

连接,以为直径,的中点为圆心作圆,以点为圆心,为半径作圆,两圆交于点,
延长至,使得,
则是等腰直角三角形,

∵,
∴,
∵,

∴,
∴,
∵,
在中,,


过点作于点,
设,则,
在中,,
在中,


解得:,则,
设交于点,则是等腰直角三角形,

在中,


又,


∴,

∴,
在中,,
∴,
综上所述,或
故答案为:或.
6.(2024·江西·中考真题)综合与实践
如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.
特例感知
(1)如图1,当时,与之间的位置关系是______,数量关系是______;
类比迁移
(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.
拓展应用
(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.
①求y与x的函数表达式,并求出y的最小值;
②当时,请直接写出的长度.
【答案】(1),(2)与之间的位置关系是,数量关系是;(3)①y与x的函数表达式,当时,的最小值为;②当时,为或.
【详解】解:(1)∵,
∴,,
∵,
∴,,
∴;
∴,,
∴,
∴,
∴与之间的位置关系是,数量关系是;
(2)与之间的位置关系是,数量关系是;理由如下:
∵,
∴,,
∵,
∴;
∴,,
∴,
∴,
∴与之间的位置关系是,数量关系是;
(3)由(1)得:,,,
∴,都为等腰直角三角形;
∵点F与点C关于对称,
∴为等腰直角三角形;,
∴四边形为正方形,
如图,过作于,
∵,,
∴,,
当时,
∴,
∴,
如图,当时,
此时,
同理可得:,
∴y与x的函数表达式为,
当时,的最小值为;
②如图,∵,正方形,记正方形的中心为,
∴,
连接,,,
∴,
∴在上,且为直径,
∴,
过作于,过作于,
∴,,
∴,
∴,
∴正方形面积为,
∴,
解得:,,经检验都符合题意,
如图,
综上:当时,为或.
精品试卷·第 2 页 (共 2 页)
第26页(共26页)

延伸阅读:

标签:

上一篇:[吉林三调]吉林地区普通中学2024-2025高中毕业年级第三次调研测试物理答案!

下一篇:Unit 2 My favourite season Part A(1-2) 同步练习(含答案)