2025年中考数学高分冲刺压轴专题
第七讲 “胡不归问题和阿氏圆”求线段最值问题专题
【知识梳理】
【胡不归问题】
【模型建立】
【问题】点A为直线l上一定点,点B为直线外一定点,P为直线l上一动点,要使AP+BP最小.
【作法】过点 A 作∠NAP=45°,过点 P 作 PE⊥AN,在直角三角形中将AP 转化为 PE,使得AP+BP=PE+BP,然后利用“两点之间线段最短”将“折”变“直”,再利用“垂线段最短”转化为求 BF 的长度.
【解题关键】
在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.
注意:而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.
【阿氏圆问题】
【模型建立】
【问题】如图,在Rt ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP、BP,求AP+BP的最小值.
【作法】连接CP,在CB上取点D,使CD=1,则有,或者先构造比例,再求出CD的长,两种方法只不过是条件互换,其实质都是构造共角的子母相似三角形,得到PD=BP,因此有AP+BP=AP+PD,然后利用“两点之间线段最短”将“折”变“直”,再利用“垂线段最短”转化为求AD的长度.
【解题关键】
在求形如“PA+kPB”的式子的最值问题中,关键是构造共角的子母相似三角形,将“PA+kPB”型问题转化为“PA+PC”型.
注意:而这里的P的运动轨迹是一个圆,根据相似可以得到kPB的等线段.
【实战精典】
【实训1】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
【答案】4
【分析】在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB=2==2BF,通过解直角三角形ABF,进一步求得结果.
【详解】解:如图,
在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,
此时PA+2PB最小,
∴∠AFB=90°
∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=,
∴∠EAD=∠CAE+∠CAD=30°,
∴PF=,
∴PA+2PB=2==2BF,
在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,
∴BF=AB sin45°=4,
∴(PA+2PB)最大=2BF=,
故答案为:.
【点睛】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.
【实训2】如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为 .
【答案】6
【分析】先求出点A,点B坐标,由勾股定理可求AB的长,作点B关于OA的对称点,可证是等边三角形,由直角三角形的性质可得CH=AC,则,即当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,由直角三角形的性质可求解.
【详解】解:∵一次函数分别交x轴、y轴于A、B两点,
∴点A(3,0),点,
∴AO=3,,
∴,
作点B关于OA的对称点,连接 ,,过点C作CH⊥AB于H,如图所示:
∴,
∴,
∴,
∴是等边三角形,
∵,
∴,
∵CH⊥AB,
∴,
∴,
∴当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,
此时,,是等边三角形,
∴,,
∴,
∴2BC+AC的最小值为6.
故答案为:6.
【点睛】本题是胡不归问题,考查了一次函数的性质,等边三角形的判定和性质,直角三角形的性质,确定点C的位置是解题的关键.
【实训3】如图, 中,,,为边上一点,则的最小值为 .
【答案】
【分析】作PH丄AD交AD的延长线于H,由直角三角形的性质可得HP=DP,因此PD+2PB=2(DP+PB)=2(PH+PB),当H、P、B三点共线时HP+PB有最小值,即PD十2PB有最小值,即可求解.
【详解】如图,过点作,交的延长线于,
四边形是平行四边形,
,
∴
∵PH丄AD
∴
∴,,
∴
当点,点,点三点共线时,HP+PB有最小值,即有最小值,
此时 ,,,
∴ ,
则最小值为,
故答案为:.
【点睛】本题考查了胡不归问题,平行四边形的性质,直角三角形的性质,垂线段最短等知识.构造直角三角形是解题的关键.
【实训4】如图,在中,,,半径为的经过点,是圆的切线,且圆的直径在线段上,设点是线段上任意一点不含端点,则的最小值为 .
【答案】
【分析】过点作关于的平行线,过点作垂直于该平行线于,可将转化为,此时就等于,当共线时,即为所要求的最小值.
【详解】解:如图所示,过点作关于的平行线,过点作垂直于该平行线于,
,,,
,
,,
,
,
当,,三点共线,即在图中在位置,在位置的时候有最小,
当,,三点共线时,有最小值,
此时,
的最小值为,
故答案为.
【点睛】本题主要考查了最值问题中的胡不归问题,解题的关键是在于将进行转换.
【实训5】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是 .
【答案】/
【分析】作∠OCE=120°,过点P作PG⊥CE于点G,利用含30度角的直角三角形的性质以及勾股定理求得PG=PC;当A、P、G在同一直线时,AP+PC= AP+PG= AG的值最小,再利用含30度角的直角三角形的性质以及勾股定理即可求解.
【详解】解:∵点A、C的坐标分别为(3,0)、(0,﹣3),
∴OA=3,OC=3,
作∠OCE=120°,
∵∠OCB=60°,
则∠OCB=∠BCE=∠FCE=60°,
过点P作PG⊥CE于点G,如图:
在Rt△PCG中,∠PCG=60°,则∠CPG=30°,
∴CG=PC,由勾股定理得PG=PC,
∴AP+PC= AP+PG,
当A、P、G在同一直线时,AP+PG= AG的值最小,
延长AG交y轴于点F,
∵∠FCG=60°,∠CGF=90°,
∴∠CFG=30°,
∴CF=2CG,GF=CF,
在Rt△OAF中,∠AOF=90°,∠OFA=30°,
∴AF=2OA=6,OF=,
∴CF=OF-OC=,
∴GF=()=,
∴AG=AF-FG=,
即AP+PC的最小值为.
故答案为:.
【点睛】本题考查了坐标与图形,含30度角的直角三角形的性质以及勾股定理,作出合适的辅助线,得到当A、P、G在同一直线时,AP+PC= AP+PG= AG的值最小是解题的关键.
【实训6】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为 .
【答案】4
【详解】思路引领:过P作PD⊥AB于D,依据△AOB是等腰直角三角形,可得∠BAO=∠ABO=45°=∠BPD,进而得到△BDP是等腰直角三角形,故PDPB,当C,P,D在同一直线上时,CD⊥AB,PC+PD的最小值等于垂线段CD的长,求得CD的长,即可得出结论.
答案详解:如图所示,过P作PD⊥AB于D,
∵直线y=x﹣3分别交x轴、y轴于B、A两点,
令x=0,则y=﹣3;令y=0,则x=3,
∴A(0,﹣3),B(3,0),
∴AO=BO=3,
又∵∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠BAO=∠ABO=45°=∠BPD,
∴△BDP是等腰直角三角形,
∴PDPB,
∴PC+PB(PCPB)(PC+PD),
当C,P,D在同一直线上,即CD⊥AB时,PC+PD的值最小,最小值等于垂线段CD的长,
此时,△ACD是等腰直角三角形,
又∵点C(0,1)在y轴上,
∴AC=1+3=4,
∴CDAC=2,
即PC+PD的最小值为,
∴PC+PB的最小值为4,
故答案为:4.
【实训7】如图,矩形ABCD中AB=3,BC,E为线段AB上一动点,连接CE,则AE+CE的最小值为 .
【答案】3
【详解】思路引领:在射线AB的下方作∠MAB=30°,过点E作ET⊥AM于T,过点C作CH⊥AM于H.易证ETAE,推出AE+EC=CE+ET≥CH,求出CH即可解决问题.
答案详解:∵四边形ABCD是矩形,
∴∠B=90°,
∴tan∠CAB,
∴∠CAB=30°,
∴AC=2BC=2,
在射线AB的下方作∠MAB=30°,过点E作ET⊥AM于T,过点C作CH⊥AM于H.
∵ET⊥AM,∠EAT=30°,
∴ETAE,
∵∠CAH=60°,∠CHA=90°,AC=2,
∴CH=AC sin6°=23,
∵AE+EC=CE+ET≥CH,
∴AE+EC≥3,
∴AE+EC的最小值为3,
故答案为3.
【实训8】如图,△ABC中,∠BAC=75°,∠ACB=60°,AC=4,则△ABC的面积为 ;点D,点E,点F分别为BC,AB,AC上的动点,连接DE,EF,FD,则△DEF的周长最小值为 .
【答案】 6+2
【分析】(1)过点A作AH⊥BC于H,根据∠BAC=75°,∠C=60°,即可得到
(2)过点B作BJ⊥AC于J,作点F关于AB的对称点M,点F关于BC的对称点N,连接BM,BN,BJ,MN,MN交AB于E′,交BC于D′,此时△FE′D′的周长=MN的长,然后证明△BMN是等腰直角三角形,BM的值最小时,MN的值最小,再根据垂线段最短可知,当BF与BJ重合时,BM的值最小,由此求解即可.
【详解】解:①如图,过点A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
∵∠BAC=75°,∠C=60°,
∴∠B=180°﹣∠BAC﹣∠C=45°,∠HAC=30°
∴BH=AH,
∴
∴AH=BH=2,
∴BC=BH+CH=2+2,
∴S△ABC= BC AH= (2+2)=6+2.
②如图,过点B作BJ⊥AC于J,作点F关于AB的对称点M,点F关于BC的对称点N,连接BM,BN,BJ,MN,MN交AB于E′,交BC于D′,此时△FE′D′的周长=MN的长.
∵BF=BM=BM,∠ABM=∠ABJ,∠CBJ=∠CBN,
∴∠MBN=2∠ABC=90°,
∴△BMN是等腰直角三角形,
∴BM的值最小时,MN的值最小,
根据垂线段最短可知,当BF与BJ重合时,BM的值最小,
∵,
∴MN的最小值为BJ=,
∴△DEF的周长的最小值为.
故答案为:6+2,.
【点睛】本题主要考查了勾股定理,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,垂线段最短,解题的关键在于能够熟练掌握相关知识进行求解.
【实训9】如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+BM的最小值为 .
【答案】4
【分析】如图,过点A作AT⊥BC于T,过点M作MH⊥BC于H,根据菱形的性质和30°角的直角三角形的性质可得MH=BM,于是可得AM+BM的最小值即为AT的长,再利用解直角三角形的知识求解即可.
【详解】解:如图,过点A作AT⊥BC于T,过点M作MH⊥BC于H.
∵四边形ABCD是菱形,∠ABC=60°,
∴∠DBC=∠ABC=30°,
∵MH⊥BC,∴∠BHM=90°,
∴MH=BM,
∴AM+BM=AM+MH,
∵AT⊥BC,∴∠ATB=90°,
∴AT=AB sin60°=4,
∵AM+MH≥AT,
∴AM+MH≥4,
∴AM+BM≥4,
∴AM+BM的最小值为4,
故答案为:4.
【点睛】本题考查了菱形的性质、30°角的直角三角形的性质、垂线段最短以及解直角三角形等知识,属于常考题型,熟练掌握上述知识、明确解答的方法是解题关键.
【实训10】如图,四边形ABCD是菱形,,且,M为对角线BD(不含B点)上任意一点,则的最小值为 .
【答案】
【详解】如解图,过点A作于点T,过点M作于点H.∵四边形ABCD是菱形,,∴,∵,∴.∴,∴,∵,∴,∴,∵,∴,∴,∴的最小值为.
【实训11】如图,四边形ABCD是菱形,,且,M为对角线BD(不含B点)上任意一点,则的最小值为 .
【答案】
【详解】如解图,过点A作于点T,过点M作于点H.∵四边形ABCD是菱形,,∴,∵,∴.∴,∴,∵,∴,∴,∵,∴,∴,∴的最小值为.
第15页(共15页)
2025年中考数学高分冲刺压轴专题
第七讲 “胡不归问题和阿氏圆”求线段最值问题专题
【知识梳理】
【胡不归问题】
【模型建立】
【问题】点A为直线l上一定点,点B为直线外一定点,P为直线l上一动点,要使AP+BP最小.
【作法】过点 A 作∠NAP=45°,过点 P 作 PE⊥AN,在直角三角形中将AP 转化为 PE,使得AP+BP=PE+BP,然后利用“两点之间线段最短”将“折”变“直”,再利用“垂线段最短”转化为求 BF 的长度.
【解题关键】
在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.
注意:而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.
【阿氏圆问题】
【模型建立】
【问题】如图,在Rt ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP、BP,求AP+BP的最小值.
【作法】连接CP,在CB上取点D,使CD=1,则有,或者先构造比例,再求出CD的长,两种方法只不过是条件互换,其实质都是构造共角的子母相似三角形,得到PD=BP,因此有AP+BP=AP+PD,然后利用“两点之间线段最短”将“折”变“直”,再利用“垂线段最短”转化为求AD的长度.
【解题关键】
在求形如“PA+kPB”的式子的最值问题中,关键是构造共角的子母相似三角形,将“PA+kPB”型问题转化为“PA+PC”型.
注意:而这里的P的运动轨迹是一个圆,根据相似可以得到kPB的等线段.
【实战精典】
【实训1】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
【实训2】如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为 .
【实训3】如图, 中,,,为边上一点,则的最小值为 .
【实训4】如图,在中,,,半径为的经过点,是圆的切线,且圆的直径在线段上,设点是线段上任意一点不含端点,则的最小值为 .
【实训5】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是 .
【实训6】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为 .
【实训7】如图,矩形ABCD中AB=3,BC,E为线段AB上一动点,连接CE,则AE+CE的最小值为 .
【实训8】如图,△ABC中,∠BAC=75°,∠ACB=60°,AC=4,则△ABC的面积为 ;点D,点E,点F分别为BC,AB,AC上的动点,连接DE,EF,FD,则△DEF的周长最小值为 .
【实训9】如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+BM的最小值为 .
【实训10】如图,四边形ABCD是菱形,,且,M为对角线BD(不含B点)上任意一点,则的最小值为 .
【实训11】如图,四边形ABCD是菱形,,且,M为对角线BD(不含B点)上任意一点,则的最小值为 .
第15页(共15页)