2024--2025学年第一学期九年级数学测试题
(本卷共有六大题,23小题,全卷满分120分,考试时间110分钟)
一、选择题(本大题共6个小题,每小题3分,共18分)
1.下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )
A.温州博物馆 B.西藏博物馆 C.广东博物馆 D.江西博物馆
2.下列说法正确的是( )
A.若抽奖活动的中奖概率为,则抽奖50次必中奖1次
B.“信丰明天降雨的概率为0.6”,表示信丰明天一定降雨
C.成语“水中捞月”所描述的事件,是随机事件
D.自然现象中,“太阳东方升起”是必然事件
3.若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是( ) (第4题图)
A.﹣1 B.0 C.1 D.2
4.如图,四边形ABCD是⊙O的内接四边形,若∠AOC=160°,则∠ABC的度数是( )
A.80° B.100° C.140° D.160°
5.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为( )
A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2
C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣2
6.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个 (第6题图)
二、填空题(本大题共6个小题,每小题3分,共18分)
7.在平面直角坐标系中,已知点P(﹣3,5)与点Q(3,m﹣2)关于原点对称,则m= .
8.已知一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为 .
9.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中约有红球 个.
10.抛物线y=x2﹣2x+2的对称轴为直线 .
11.设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为 .
12.如图,在平面直角坐标系中,点A(﹣1,2),OC=4,将平行四边形OABC绕点O旋转90°后,点B的对应点B'坐标是 . (第12题图)
三、解答题(本大题共5小题,每小题6分,共30分)
13.(1)解方程:x2﹣2x﹣4=0;
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积为多少平方步?
14.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.
(1)求证:EF=BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.
15.信丰县直部门对A,B,C,D四个小区的居民进行诚信宣传活动,有很多公务员参与此次宣传工作,公务员王明和李丽分别被随机安排到这四个小区中的一个小区组工作.
(1)王明被安排到A小区工作的概率是 .
(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.
16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).
(1)在图1中,作△ABC关于点O对称的△A'B'C';
(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.
17.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.
(1)试判断△ABC的形状,并给出证明;
(2)若AB=,AD=1,求CD的长度.
四、解答题(本大题共3小题,每小题8分,共24分)
18.某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数).
(1)每件文具的售价定为多少元时,月销售利润为2520元?
(2)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
19.如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.
(1)判断直线BD与⊙O的位置关系,并说明理由;
(2)若AB=4,求图中阴影部分的面积.
20.小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
五、解答题(本大题共2小题,每小题9分,共18分)
21.课本再现
(1)在⊙O中,∠AOB是所对的圆心角,∠C是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C=∠AOB;
知识应用
(2)如图4,若⊙O的半径为2,PA,PB分别与⊙O相切于点A,B,∠C=60°,求PA的长.
22.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边 形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.
(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;
(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;
(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.
六、解答题(本大题共12分)
23.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:
x … ﹣2 ﹣1 0 1 2 …
y … m 0 ﹣3 n ﹣3 …
(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;
(2)求抛物线的表达式及m,n的值;
(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?
(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系 .