秦安二中2024-2025年高三12月月考模拟检测卷
物 理
时长:75分钟 总分:100分
一、选择题(每题3分,共72分)
1.使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v2与第一宇宙速度v1的关系是v2=v1。已知某星球的半径为地球半径R的4倍,质量为地球质量M的2倍,地球表面重力加速度为g。不计其他星球的影响,则该星球的第二宇宙速度为( )
A. B. C. D.
2.如图所示,在皮带传送装置中,皮带把物体P匀速带至高处,在此过程中,下列说法不正确的是( )
A.摩擦力对物体做正功
B.摩擦力对物体做负功
C.支持力对物体不做功
D.合外力对物体做功为零
3.关于静电场,下列说法中正确的是( )
A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加
B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,电荷在该点的电势能越大
C.在同一个等势面上的各点,场强的大小必然是相等的
D.电势降低的方向就是电场场强的方向
4.如图所示,甲图中电容器的两个极板和电源的两极相连,乙图中电容器充电后断开电源。在电容器的两个极板间用相同的悬线分别吊起完全相同的带电小球,小球静止时悬线和竖直方向的夹角均为θ,将两图中的右极板向右平移时,下列说法正确的是( )
甲 乙
A.甲图中夹角减小,乙图中夹角增大
B.甲图中夹角减小,乙图中夹角不变
C.甲图中夹角不变,乙图中夹角不变
D.甲图中夹角减小,乙图中夹角减小
5.如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为g。在他从上向下滑到底端的过程中,下列说法正确的是( )
A.运动员减少的重力势能全部转化为动能
B.运动员获得的动能为mgh
C.运动员克服摩擦力做功为mgh
D.下滑过程中系统减少的机械能为mgh
6.一质量为m的物体静止在光滑水平面上,在水平力F作用下,经时间t,通过位移L后,动量变为p,动能变为Ek。若上述过程F不变,物体的质量变为,以下说法正确的是( )
A.经过时间2t,物体动量变为2p
B.经过位移2L,物体动量变为2p
C.经过时间2t,物体动能变为4Ek
D.经过位移2L,物体动能变为4Ek
7.如图所示电路中,R1和R2是两个滑动变阻器,电源的内阻不可忽略.开关S闭合后,灯泡L正常发光,两金属板之间的带电油滴处于静止状态,则 ( )
A.仅将R1的滑片向右移动,油滴会向上运动
B.仅将R2的滑片向左移动,灯泡L会变亮
C.仅将R1的滑片向右移动,路端电压变小
D.仅将R2的滑片向左移动,电源的功率变小
8.放在粗糙水平地面上的物体受到水平拉力的作用,在0~6 s内其速度与时间图象和该拉力的功率与时间的图象如图所示。下列说法正确的是( )
A.0~6 s内物体的位移大小为12 m
B.0~6 s内拉力做功为70 J
C.物体的质量为10 kg
D.滑动摩擦力的大小为5 N
9.如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有 ( )
A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少
B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少
C.小球由B向C运动的过程中,处于超重状态,小球的动能增加
D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少
10.如图所示,a、b、c为真空中三个带电小球,b球带电荷量为+Q,用绝缘支架固定,a、c两小球用绝缘细线悬挂,处于平衡状态时三小球球心等高,且a、b和b、c间距离相等,悬挂a小球的细线向左倾斜,悬挂c小球的细线竖直,则 ( )
A.a、c两小球带同种电荷
B.a、c两小球带异种电荷
C.a小球带电荷量为-4Q
D.c小球带电荷量为+4Q
二、填空(每空2分,共16分)
11.某实验小组用如图甲所示的实验装置验证机械能守恒定律。将一钢球用细线系住悬挂在铁架台上,钢球静止于A点。在钢球底部竖直地粘住一片宽度为d的遮光条。在A的正下方固定一光电门,将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t可由计时器测出,取v=作为钢球经过A点时的瞬时速度。记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间重力势能的变化大小ΔEp与动能的变化大小ΔEk,就能验证机械能是否守恒。
(1)用ΔEk=mv2计算钢球动能变化量的大小,用刻度尺测量遮光条宽度,示数如图乙所示,其读数为________ cm。某次测量中,计时器的示数为0.010 0 s,则钢球经过A时的速度v=________ m/s(保留3位有效数字)。
(2)下表为该实验小组的实验结果:
ΔEp(×10-2 J) 4.892 9.786 14.69 19.59 29.38
ΔEk(×10-2 J) 5.04 10.1 15.1 20.0 29.8
从表中发现ΔEp与ΔEk之间存在差异,可能造成该差异的原因是________。
A.用ΔEp=mgh计算钢球重力势能的变化大小时,钢球下落高度h为测量释放时钢球球心到球在A点时底端之间的竖直距离
B.钢球下落过程中存在空气阻力
C.实验中所求速度是遮光条的速度,比钢球速度略大
12.要精确测量一个直流电源的电动势和内阻,有下列实验器材可供选择:
A.待测电源(电动势约为4.5 V,内阻约为2 Ω)
B.电流表A(量程为0.6 A,内阻为1 Ω)
C.电压表V1(量程为15 V,内阻为3 kΩ)
D.电压表V2(量程为3 V,内阻为2 kΩ)
E.定值电阻R1=500 Ω
F.定值电阻R2=1 000 Ω
G.滑动变阻器R(阻值范围为0~20 Ω)
H.开关及导线若干
(1)该实验中电压表应选________,定值电阻应选______(均选填器材前面的序号)。
(2)在方框中画出实验电路图。
三、计算题(34分)
13.(12分)在光滑绝缘的水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电荷量为+2q,B球的带电荷量为-3q,组成一带电系统,如图所示,虚线MP为A、B两球连线的垂直平分线,虚线NQ与MP平行且相距5L.最初A和B分别静止于虚线MP的两侧,距MP的距离均为L,且A球距虚线NQ的距离为4L.若视小球为质点,不计轻杆的质量,在虚线MP、NQ间加上水平向右、场强大小为E的匀强电场后,试求:
(1)B球刚进入电场时,带电系统的速度大小;
(2)带电系统向右运动的最大距离;
(3)带电系统从开始运动到速度第一次为零时,B球电势能的变化量.
14.(10分)如图所示,内表面光滑绝缘的半径为1.2 m的圆形轨道处于竖直平面内,有竖直向下的匀强电场,场强大小为3×106 V/m。有一质量为0.12 kg、电荷量为1.6×10-6 C,带负电的小球,小球在圆轨道内壁做圆周运动,当运动到最低点A时,小球与轨道压力恰好为零,g取10 m/s2,求:
(1)小球在A点处的速度大小;
(2)小球运动到最高点B时对轨道的压力。
15.(12分)如图所示,光滑水平轨道AB与光滑半圆形轨道BC在B点相切连接,半圆轨道半径为R,轨道AB、BC在同一竖直平面内.一质量为m的物块在A处压缩弹簧,并由静止释放,物块恰好能通过半圆轨道的最高点C.已知物块在到达B点之前已经与弹簧分离,重力加速度为g.求:
(1)物块由C点平抛出去后在水平轨道上的落点到B点的距离;
(2)物块在B点时对半圆轨道的压力大小;
(3)物块在A点时弹簧的弹性势能.秦安二中2024-2025年高三12月月考模拟检测卷
物 理
时长:75分钟 总分:100分
一、选择题(每题3分,共72分)
1.使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v2与第一宇宙速度v1的关系是v2=v1。已知某星球的半径为地球半径R的4倍,质量为地球质量M的2倍,地球表面重力加速度为g。不计其他星球的影响,则该星球的第二宇宙速度为( )
A. B. C. D.
【答案】 B
2.如图所示,在皮带传送装置中,皮带把物体P匀速带至高处,在此过程中,下列说法不正确的是( )
A.摩擦力对物体做正功
B.摩擦力对物体做负功
C.支持力对物体不做功
D.合外力对物体做功为零
【答案】 B
3.关于静电场,下列说法中正确的是( )
A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加
B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,电荷在该点的电势能越大
C.在同一个等势面上的各点,场强的大小必然是相等的
D.电势降低的方向就是电场场强的方向
【答案】 B
4.如图所示,甲图中电容器的两个极板和电源的两极相连,乙图中电容器充电后断开电源。在电容器的两个极板间用相同的悬线分别吊起完全相同的带电小球,小球静止时悬线和竖直方向的夹角均为θ,将两图中的右极板向右平移时,下列说法正确的是( )
甲 乙
A.甲图中夹角减小,乙图中夹角增大
B.甲图中夹角减小,乙图中夹角不变
C.甲图中夹角不变,乙图中夹角不变
D.甲图中夹角减小,乙图中夹角减小
【答案】B
5.如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为g。在他从上向下滑到底端的过程中,下列说法正确的是( )
A.运动员减少的重力势能全部转化为动能
B.运动员获得的动能为mgh
C.运动员克服摩擦力做功为mgh
D.下滑过程中系统减少的机械能为mgh
【答案】D
6.一质量为m的物体静止在光滑水平面上,在水平力F作用下,经时间t,通过位移L后,动量变为p,动能变为Ek。若上述过程F不变,物体的质量变为,以下说法正确的是( )
A.经过时间2t,物体动量变为2p
B.经过位移2L,物体动量变为2p
C.经过时间2t,物体动能变为4Ek
D.经过位移2L,物体动能变为4Ek
【答案】A
7.如图所示电路中,R1和R2是两个滑动变阻器,电源的内阻不可忽略.开关S闭合后,灯泡L正常发光,两金属板之间的带电油滴处于静止状态,则 ( )
A.仅将R1的滑片向右移动,油滴会向上运动
B.仅将R2的滑片向左移动,灯泡L会变亮
C.仅将R1的滑片向右移动,路端电压变小
D.仅将R2的滑片向左移动,电源的功率变小
【答案】:B
8.放在粗糙水平地面上的物体受到水平拉力的作用,在0~6 s内其速度与时间图象和该拉力的功率与时间的图象如图所示。下列说法正确的是( )
A.0~6 s内物体的位移大小为12 m
B.0~6 s内拉力做功为70 J
C.物体的质量为10 kg
D.滑动摩擦力的大小为5 N
【答案】 BCD
9.如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有 ( )
A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少
B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少
C.小球由B向C运动的过程中,处于超重状态,小球的动能增加
D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少
【答案】 BD
10.如图所示,a、b、c为真空中三个带电小球,b球带电荷量为+Q,用绝缘支架固定,a、c两小球用绝缘细线悬挂,处于平衡状态时三小球球心等高,且a、b和b、c间距离相等,悬挂a小球的细线向左倾斜,悬挂c小球的细线竖直,则 ( )
A.a、c两小球带同种电荷
B.a、c两小球带异种电荷
C.a小球带电荷量为-4Q
D.c小球带电荷量为+4Q
【答案】 AC
二、填空(每空2分,共16分)
11.某实验小组用如图甲所示的实验装置验证机械能守恒定律。将一钢球用细线系住悬挂在铁架台上,钢球静止于A点。在钢球底部竖直地粘住一片宽度为d的遮光条。在A的正下方固定一光电门,将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t可由计时器测出,取v=作为钢球经过A点时的瞬时速度。记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间重力势能的变化大小ΔEp与动能的变化大小ΔEk,就能验证机械能是否守恒。
(1)用ΔEk=mv2计算钢球动能变化量的大小,用刻度尺测量遮光条宽度,示数如图乙所示,其读数为________ cm。某次测量中,计时器的示数为0.010 0 s,则钢球经过A时的速度v=________ m/s(保留3位有效数字)。
(2)下表为该实验小组的实验结果:
ΔEp(×10-2 J) 4.892 9.786 14.69 19.59 29.38
ΔEk(×10-2 J) 5.04 10.1 15.1 20.0 29.8
从表中发现ΔEp与ΔEk之间存在差异,可能造成该差异的原因是________。
A.用ΔEp=mgh计算钢球重力势能的变化大小时,钢球下落高度h为测量释放时钢球球心到球在A点时底端之间的竖直距离
B.钢球下落过程中存在空气阻力
C.实验中所求速度是遮光条的速度,比钢球速度略大
【答案】 (1)1.50 2分
1.50 2分
(2)C 4分
12.要精确测量一个直流电源的电动势和内阻,有下列实验器材可供选择:
A.待测电源(电动势约为4.5 V,内阻约为2 Ω)
B.电流表A(量程为0.6 A,内阻为1 Ω)
C.电压表V1(量程为15 V,内阻为3 kΩ)
D.电压表V2(量程为3 V,内阻为2 kΩ)
E.定值电阻R1=500 Ω
F.定值电阻R2=1 000 Ω
G.滑动变阻器R(阻值范围为0~20 Ω)
H.开关及导线若干
(1)该实验中电压表应选________,定值电阻应选______(均选填器材前面的序号)。
(2)在方框中画出实验电路图。
【答案】 (1)D F 4分
(2)如图所示。
4分
甲 乙
三、计算题(34分)
13.(12分)在光滑绝缘的水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电荷量为+2q,B球的带电荷量为-3q,组成一带电系统,如图所示,虚线MP为A、B两球连线的垂直平分线,虚线NQ与MP平行且相距5L.最初A和B分别静止于虚线MP的两侧,距MP的距离均为L,且A球距虚线NQ的距离为4L.若视小球为质点,不计轻杆的质量,在虚线MP、NQ间加上水平向右、场强大小为E的匀强电场后,试求:
(1)B球刚进入电场时,带电系统的速度大小;
(2)带电系统向右运动的最大距离;
(3)带电系统从开始运动到速度第一次为零时,B球电势能的变化量.
【答案】:(1) 4分
(2)3L 4分
(3)6qEL 4分
14.(10分)如图所示,内表面光滑绝缘的半径为1.2 m的圆形轨道处于竖直平面内,有竖直向下的匀强电场,场强大小为3×106 V/m。有一质量为0.12 kg、电荷量为1.6×10-6 C,带负电的小球,小球在圆轨道内壁做圆周运动,当运动到最低点A时,小球与轨道压力恰好为零,g取10 m/s2,求:
(1)小球在A点处的速度大小;
(2)小球运动到最高点B时对轨道的压力。
【答案】 (1)6 m/s 5分
(2)21.6 N 5分
15.(12分)如图所示,光滑水平轨道AB与光滑半圆形轨道BC在B点相切连接,半圆轨道半径为R,轨道AB、BC在同一竖直平面内.一质量为m的物块在A处压缩弹簧,并由静止释放,物块恰好能通过半圆轨道的最高点C.已知物块在到达B点之前已经与弹簧分离,重力加速度为g.求:
(1)物块由C点平抛出去后在水平轨道上的落点到B点的距离;
(2)物块在B点时对半圆轨道的压力大小;
(3)物块在A点时弹簧的弹性势能.
【答案】 (1)2R 4分
(2)6mg 4分
(3)mgR 4分
【解析】 (1)因为物块恰好能通过C点,则有:mg=m
又x=vCt,2R=gt2
解得x=2R
即物块在水平轨道上的落点到B点的距离为2R;
(2)物块由B到C过程中机械能守恒,
则有mvB2=2mgR+mvC2
设物块在B点时受到的半圆轨道的支持力大小为FN,
则有:FN-mg=m,
解得FN=6mg
由牛顿第三定律可知,物块在B点时对半圆轨道的压力大小为FN′=FN=6mg.
(3)由机械能守恒定律可知,物块在A点时弹簧的弹性势能为
Ep=2mgR+mvC2,解得Ep=mgR.