2024-2025学年福建省厦门市内厝中学七年级(上)期中
数学模拟练习试卷
一、选择题:本题共10小题,每小题2分,共20分。在每小题给出的选项中,只有一项是符合题目要求的。
1.实数的相反数是( )
A. B. C. D.
2.下列计算中,正确的是( )
A. B. C. D.
3.年国庆长假期间的月日,鼓浪屿景区的游客总数约为人,将用科学记数法表示为( )
A. B. C. D.
4.在数轴上,把表示的点移动个单位长度后的点表示的数是( )
A. 或 B. C. 或 D.
5.“与的和的倍”用式子表示为( )
A. B. C. D.
6.下列等式中,一定能成立的是( )
A. B.
C. D.
7.若,互为相反数,,互为倒数,则多项式的值为( )
A. B. C. D.
8.一台微波炉成本价是元,销售价比成本价增加,则销售价应是( )
A. B. C. D.
9.下列计算正确的是( )
A. B.
C. D.
10.已知,,则式子的值等于( )
A. B. C. D.
二、填空题:本题共6小题,共18分。
11.计算:
______;
______;
______;
______;
______;
______;
______;
______.
12.比较大小用“”或“”或“”连接:
______;
______.
13.单项式的次数是______.
14.写出一个只含字母的二次三项式,并按字母降幂排列:______.
15.有理数、在数轴上的对应的位置如图所示:则 ______
16.如图,四边形是长方形,,,把这个长方形分割成标号为,,,的四个小长方形,其中标号为,的两个长方形形状大小完全相同,则标号为,的两个长方形的周长之和等于______.
三、解答题:本题共9小题,共82分。解答应写出文字说明,证明过程或演算步骤。
17.本小题分
计算题:
;
;
;
;
.
18.本小题分
化简:
;
;
;
.
19.本小题分
先化简,再求值:,其中,.
20.本小题分
两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是千米小时,水流速度是千米小时.
小时后两船相距多远?
小时后甲船比乙船多航行多少千米?
21.本小题分
如图所示数轴,回答下列问题:
在数轴上表示下列各数的点:,,,.
数轴上表示和表示的两点之间距离是______;数轴上表示和表示的两点之间距离是______.
若数轴上点表示的数是,点表示的数是,则,两点之间的距离是______用含的式子表示.
22.本小题分
一个篮球的单价是元,一个排球的单价是元.
买个篮球和个排球共花费多少元?
若第一次买个篮球和个排球共花费元,第二次买个篮球和个排球共花费元,求的值.
23.本小题分
某巡警车在一条南北大道上巡逻,某天巡警车从岗亭处出发,规定向北方向为正,当天行驶记录如下单位:千米,,,,,,,
最终巡警车是否回到岗亭处?若没有,在岗亭何方,距岗亭多远?
摩托车行驶千米耗油升,油箱有油升,够不够?若不够,途中还需补充多少升油?
24.本小题分
如图是一个三角形点阵,从上到下有无数多行,其中第一行、第二行、第三行、第四行、第五行分别有,,,,个点,,如此,按上述规律排列:
第行有______个点;第行有______个点;
猜想三角形点阵前行的点数的和是多少?用含的式子表示三角形点阵前行的点数的和能否为?请简要说明理由.
25.本小题分
定义:若两个有理数,满足,则称,是关于的平衡数.
与是否为关于的平衡数,答:______;填“是”或“否”与是关于的平衡数,则 ______;
若,两数是关于的平衡数,,试比较与的大小,并说明理由.
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.答案不唯一
15.
16.
17.解:原式
;
原式
;
;
原式
;
原式
.
18.解:
;
;
;
.
19.解:原式
,
当,时,
原式.
20.解:
;
答:小时后两船相距千米.
;
答:小时后甲船比乙船多航行千米.
21.
22.解:根据题意得:,
买个篮球和个排球共花费元;
根据题意得:,
方程方程得:,
方程两边同时除以得:,
的值为.
23.解:解:,
即没有回到岗亭处,在岗亭南千米处;
千米,
升,
升,
则油箱的油不够,还需要补充的油量为升.
24.(1)
25.
第1页,共1页