人教版(2024版)七上数学 5.3 实际问题与一元一次方程(第一课时)同步练习(含解析)


5.3 实际问题与一元一次方程(第一课时)同步练习
班级:________ 姓名:________
一、单选题
1.某车间有45名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A. B.
C. D.
2.粽子作为中国历史文化积淀最深厚的传统食品之一,传播甚远,最初是用来是祭祀祖先神灵的贡品.某家庭制作的粽子礼盒每份由6个蛋黄肉粽和4个碱水粽组成.用1千克糯米可做24个蛋黄肉粽或16个碱水粽,现要用6千克糯米制作粽子,设用x千克糯米制作蛋黄肉粽,恰好使制作的蛋黄肉粽和碱水粽配套,则可列方程为(  )
A. B.
C. D.
3.完成某项工程,甲单独做需天完成,乙单独做需天完成.现在甲先做了天,乙再参加合做,求完成这项工程甲、乙合做了多少天若设完成此项工程甲、乙合做了天,则下列方程中正确的是( )
A. B.
C. D.
4.整理一批数据,由一人做完成,现在计划先由x人做,再增加5人做,完成这项工作的 ,可列方程( )
A. B.
C. D.
5.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶( )
A.8 B.14 C.10 D.12
二、填空题
6.一机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,如果2个大齿轮与3个小齿轮刚好配成一套,那么需要安排 名工人加工大齿轮, 名工人加工小齿轮,才能使每天加工的大、小齿轮刚好配套.
7.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是 .
8.整理一批图书,由一个人做要完成,现计划由一部分人先做,然后增加2人与他们一起做,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做, 列方程是
9.某木材加工厂制作桌子的车间有14名工人,每名工人每小时可以加工10张桌面或30条桌腿.1张桌面需要配4条桌腿,为使每小时加工的桌面和桌腿刚好配套,该车间应安排 名工人加工桌腿.
10.甲、乙两管同时打开,分钟就能注满水池.现在先打开甲管,分钟后再打开乙管,再过分钟就注满了水池.已知甲管比乙管每分钟多注入立方米的水,那么这个水池的容积是 立方米.
三、解答题
11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.
(1)求调入多少名工人;
(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?
12.一项工程,若请甲、乙两个工程队合作,则需6周完成,需要施工费万元;若先请甲工程队单独做4周后,剩下的请乙工程队来做,则还需要9周完成,需要施工费万元.
(1)甲、乙两个工程队单独修路分别需要多少周完成?
(2)请甲、乙两个工程队工作一周需要施工费分别为多少万元?
(3)若只请一个工程队单独做,使该工程的施工费用低,应该选择甲工程队还是乙工程队?
答案与解析
一、单选题
1.某车间有45名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A. B.
C. D.
【答案】D
【解析】本题考查了由实际问题抽象出一元一次方程.设分配x名工人生产螺栓,则分配名工人生产螺母,根据生产的螺母数量为螺栓的2倍,即可得出关于x的一元一次方程,此题得解.
解:设分配x名工人生产螺栓,则分配名工人生产螺母,
依题意,得:.
故选:D.
2.粽子作为中国历史文化积淀最深厚的传统食品之一,传播甚远,最初是用来是祭祀祖先神灵的贡品.某家庭制作的粽子礼盒每份由6个蛋黄肉粽和4个碱水粽组成.用1千克糯米可做24个蛋黄肉粽或16个碱水粽,现要用6千克糯米制作粽子,设用x千克糯米制作蛋黄肉粽,恰好使制作的蛋黄肉粽和碱水粽配套,则可列方程为(  )
A. B.
C. D.
【答案】B
【解析】本题主要考查了列一元一次方程,审清题意、找准等量关系成为解题的关键.
设用x千克糯米制作蛋黄肉粽,则用千克糯米制作碱水粽,然后根据“粽子礼盒每份由6个蛋黄肉粽和4个碱水粽组成.用1千克糯米可做24个蛋黄肉粽或16个碱水粽”列方程即可.
解:设用x千克糯米制作蛋黄肉粽,则用千克糯米制作碱水粽,
根据题意得.
故选:B.
3.完成某项工程,甲单独做需天完成,乙单独做需天完成.现在甲先做了天,乙再参加合做,求完成这项工程甲、乙合做了多少天若设完成此项工程甲、乙合做了天,则下列方程中正确的是( )
A. B.
C. D.
【答案】A
【解析】本题考查了列一元一次方程解决实际问题,找准等量关系,正确建立方程是解题关键.将这项工程的工程量看作为“1”,从而可得甲每天完成的工程量为,乙每天完成的工程量为,再根据题意列出方程即可得.
解:将这项工程的工程量看成“1”,则甲每天完成的工程量为,乙每天完成的工程量为,
由题意得:
故选:A.
4.整理一批数据,由一人做完成,现在计划先由x人做,再增加5人做,完成这项工作的 ,可列方程( )
A. B.
C. D.
【答案】B
【解析】本题主要考查了列一元一次方程,先确定1人的工作效率为,即可得出x人做的工作量,及增加5人做的工作量,根据工作量之和等于,列出方程即可.
解:根据题意,得

故选:B.
5.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶( )
A.8 B.14 C.10 D.12
【答案】C
【解析】此题考查了一元一次方程的应用,解题的关键是建立等量关系.设分配x名工人生产茶壶,则人生产茶杯,由一个茶壶与4只茶杯配套可知茶杯的个数是茶壶个数的4倍从而得出等量关系,就可以列出方程求出即可.
解:设分配x名工人生产茶壶,则人生产茶杯,根据题意得:
,即,
解得:,
故需要有10名工人生产茶壶,
故选:C.
二、填空题
6.一机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,如果2个大齿轮与3个小齿轮刚好配成一套,那么需要安排 名工人加工大齿轮, 名工人加工小齿轮,才能使每天加工的大、小齿轮刚好配套.
【答案】25 60
【解析】此题考查了一元一次方程的实际应用,设安排x名工人加工大齿轮,根据如果2个大齿轮与3个小齿轮刚好配成一套列得方程求解,正确理解题意列得一元一次方程是解题的关键.
解:设安排x名工人加工大齿轮,根据题意得

解得
∴安排25名工人加工大齿轮,60名工人加工小齿轮,
故答案为:25,60.
7.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是 .
【答案】
【解析】此题考查了一元一次方程的应用,设原计划每天生产x套,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,据此列方程即可.
解:设原计划每天生产x套,
根据题意可得,
故答案为:.
8.整理一批图书,由一个人做要完成,现计划由一部分人先做,然后增加2人与他们一起做,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做, 列方程是
【答案】
【解析】本题考查了从实际问题抽象出一元一次方程,设全部工作量是1,由一个人做要30小时完成,即一个人一小时能完成全部工作的,这部分共有x人,根据本题中的等量关系“这部分人4小时的工作量+增加2人后所有人5小时的工作量=全部工作量”即可得方程
解:由题意,得

故答案为:.
9.某木材加工厂制作桌子的车间有14名工人,每名工人每小时可以加工10张桌面或30条桌腿.1张桌面需要配4条桌腿,为使每小时加工的桌面和桌腿刚好配套,该车间应安排 名工人加工桌腿.
【答案】8
【解析】本题考查了一元一次方程的应用,设该车间应安排名工人加工桌腿,则安排名工人加工桌面,根据每小时加工桌腿的总数量等于加工桌面总数量的4倍,可列出关于的一元一次方程,解之即可得出结论.
解:设该车间应安排名工人加工桌腿,则安排名工人加工桌面,
根据题意得:,
解得:,
该车间应安排8名工人加工桌腿.
故答案为:8.
10.甲、乙两管同时打开,分钟就能注满水池.现在先打开甲管,分钟后再打开乙管,再过分钟就注满了水池.已知甲管比乙管每分钟多注入立方米的水,那么这个水池的容积是 立方米.
【答案】
【解析】本题考查了工程问题的解决方法,解题的关键是找到等量关系列出方程.
设乙水管每分钟注入立方米水,甲水管每分钟注入立方米水,根据水池的容积不变,列出方程解出即可解答本题.
解:设乙水管每分钟注入立方米水,甲水管每分钟注入立方米水,由题意得:,
解得:,
所以容积是(立方米),
故答案为:.
三、解答题
11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.
(1)求调入多少名工人;
(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?
【答案】(1)调入6名工人
(2)10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套
【解析】本题考查一元一次方程的应用,解题的关键是读 题意,找到等量关系列方程.
(1)设调入名工人,根据“调整后车间的总人数是调入工人人数的3倍多4人”得:,可解得答案;
(2)设名工人生产螺栓,由“1个螺栓需要2个螺母”,可列方程,即可解得答案.
解:(1)设调入名工人,
根据题意得:,
解得,
∴调入6名工人;
(2)设名工人生产螺栓,则名工人生产螺母,
∵每天生产的螺栓和螺母刚好配套,
∴,
解得,

答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.
12.一项工程,若请甲、乙两个工程队合作,则需6周完成,需要施工费万元;若先请甲工程队单独做4周后,剩下的请乙工程队来做,则还需要9周完成,需要施工费万元.
(1)甲、乙两个工程队单独修路分别需要多少周完成?
(2)请甲、乙两个工程队工作一周需要施工费分别为多少万元?
(3)若只请一个工程队单独做,使该工程的施工费用低,应该选择甲工程队还是乙工程队?
【答案】(1)甲工程队单独修路需要10周完成,乙工程队单独修路需要15周完成;
(2)甲工程队工作一周需要施工费1.3万元,乙工程队工作一周需要施工费0.8万元;
(3)应该选择乙工程队
【解析】(1)设甲工程队一周完成的工作量为,则乙工程队一周完成的工作量为,根据若先请甲工程队单独做4周后,剩下的请乙工程队来做,则还需要9周完成,列出一元一次方程,解方程即可;
(2)设甲工程队工作一周需要施工费万元,则乙工程队工作一周需要施工费万元,即万元,根据若先请甲工程队单独做4周后,剩下的请乙工程队来做,则还需要9周完成,需要施工费12.4万元.列出一元一次方程,解方程即可;
(3)分别求出只请一个工程队单独做的施工费,再比较即可.
解:(1)设甲工程队一周完成的工作量为,则乙工程队一周完成的工作量为,
由题意得:,
解得:,

即甲工程队单独修路需要10周完成,乙工程队单独修路需要15周完成,
答:甲工程队单独修路需要10周完成,乙工程队单独修路需要15周完成;
(2)设甲工程队工作一周需要施工费万元,则乙工程队工作一周需要施工费万元,即万元,
由题意得:,
解得:,

答:甲工程队工作一周需要施工费1.3万元,乙工程队工作一周需要施工费0.8万元;
(3)应该选择乙工程队,理由如下:
只请甲工程队单独做,施工费为(万元),
只请乙工程队单独做,施工费为(万元),

应该选择乙工程队.
()

延伸阅读:

标签:

上一篇:第1-3单元解决问题专项训练(含答案)数学五年级上册北师大版

下一篇:第29章 投影与视图 九年级下册数学人教版(2012)单元质检卷(B卷)(含答案)