宁夏回族自治区银川市唐徕回民中学2025届高三上学期质量检查文科数学试题(含答案)

2025届宁夏回族自治区银川市唐徕回民中学普通高中毕业班质量检查数学试题文试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.△ABC中,AB=3,,AC=4,则△ABC的面积是( )
A. B. C.3 D.
2.已知平面向量,满足,,且,则( )
A.3 B. C. D.5
3.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )
A. B. C. D.
4.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )
A.1194 B.1695 C.311 D.1095
5.函数的图象大致为(    )
A. B.
C. D.
6.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )
A. B. C. D.
7.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
8.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )
A.3 B. C. D.
9.若,,,则下列结论正确的是( )
A. B. C. D.
10.在等差数列中,若为前项和,,则的值是( )
A.156 B.124 C.136 D.180
11.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围( )
A.[2,4] B.[4,6] C.[5,8] D.[6,7]
12.设复数满足,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________
14.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____
15.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.
16.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.
(1)求证:平面;
(2)求二面角的正弦值.
18.(12分)已知数列和满足,,,,.
(Ⅰ)求与;
(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.
19.(12分)已知函数.
(1)若,求证:.
(2)讨论函数的极值;
(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.
20.(12分)在角中,角A、B、C的对边分别是a、b、c,若.
(1)求角A;
(2)若的面积为,求的周长.
21.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .
(1)求点的坐标;
(2)求的取值范围.
22.(10分)已知在中,角的对边分别为,且.
(1)求的值;
(2)若,求的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解题分析】
由余弦定理求出角,再由三角形面积公式计算即可.
【题目详解】
由余弦定理得:,
又,所以得,
故△ABC的面积.
故选:A
【题目点拨】
本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.
2、B
【解题分析】
先求出,再利用求出,再求.
【题目详解】
解:
由,所以

,,
故选:B
【题目点拨】
考查向量的数量积及向量模的运算,是基础题.
3、C
【解题分析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.
【题目详解】
解:由,翻折后得到,又,
则面,可知.
又因为,则面,于是,
因此三棱锥外接球球心是的中点.
计算可知,则外接球半径为1,从而外接球表面积为.
故选:C.
【题目点拨】
本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.
4、D
【解题分析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.
【题目详解】
时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.
故选:D.
【题目点拨】
本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.
5、A
【解题分析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.
【题目详解】
因为 ,
所以函数为偶函数,图象关于轴对称,故可以排除;
因为,故排除,
因为由图象知,排除.
故选:A
【题目点拨】
本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.
6、B
【解题分析】
由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.
7、B
【解题分析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【题目详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【题目点拨】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
8、C
【解题分析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.
【题目详解】
显然直线过抛物线的焦点
如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E
根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC
设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=
所以
故选:C
【题目点拨】
本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.
9、D
【解题分析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.
【题目详解】
由指数函数的性质,可得,即,
又由,所以.
故选:D.
【题目点拨】
本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.
10、A
【解题分析】
因为,可得,根据等差数列前项和,即可求得答案.
【题目详解】


.
故选:A.
【题目点拨】
本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.
11、B
【解题分析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.
【题目详解】
画出不等式组所表示的可行域如图△AOB
当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意
t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16
由题意可得,20≤t+16≤22解可得4≤t≤6
故选:B.
【题目点拨】
此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.
12、D
【解题分析】
根据复数运算,即可容易求得结果.
【题目详解】
.
故选:D.
【题目点拨】
本题考查复数的四则运算,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解题分析】
先还原几何体,再根据柱体体积公式求解
【题目详解】
空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为
【题目点拨】
本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题
14、2
【解题分析】
先由题意列出关于的方程,求得的通项公式,再表示出即可求解.
【题目详解】
解:设公比为,且,
时,上式有最小值,
故答案为:2.
【题目点拨】
本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.
15、
【解题分析】
由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.
【题目详解】
解:由函数,可得
的增区间为,,
时,,,时,,
当关于的不等式的解集为,,
可得不成立,
时,时,不成立;
,即为,
可得,即有,
显然,4成立;由和的图象可得在仅有两个交点.
综上可得的所有值的和为1.
故答案为:1.
【题目点拨】
本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.
16、
【解题分析】
由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.
【题目详解】
欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,
所以.
∴,
当时,的最大值为.
故答案为:.
【题目点拨】
本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2).
【解题分析】
(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;
(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.
【题目详解】
(1)取中点,连接、、,
且,四边形为平行四边形,且,
、分别为、中点,且,
则四边形为平行四边形,且,
且,且,
所以,四边形为平行四边形,且,
四边形为平行四边形,,
平面,平面,平面;
(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,
,,,
设平面的法向量为,
由,得,取,则,,,
设平面的法向量为,
由,得,取,则,,,
,,
因此,二面角的正弦值为.
【题目点拨】
本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.
18、(Ⅰ),;(Ⅱ)1
【解题分析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.
(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.
【题目详解】
(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.
又当时, ,解得.
当时, …①
…②
①-②有,即.当时也满足.故为常数列,
所以.即.
故,
(Ⅱ)因为对,恒成立.故只需求的最小值即可.
设,则,
又,
又当时,时.
当时,因为
.
故.
综上可知.故随着的增大而增大,故,故
【题目点拨】
本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.
19、(1)证明见解析;(2)见解析;(3)存在,1.
【解题分析】
(1),求出单调区间,进而求出,即可证明结论;
(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;
(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.
【题目详解】
(1),,
,当时,,
当时,,∴,故.
(2)由题知,,,
①当时,,
所以在上单调递减,没有极值;
②当时,,得,
当时,;当时,,
所以在上单调递减,在上单调递增.
故在处取得极小值,无极大值.
(3)不妨令,
设在恒成立,
在单调递增,,
在恒成立,
所以,当时,,
由(2)知,当时,在上单调递减,
恒成立;
所以不等式在上恒成立,只能.
当时,,由(1)知在上单调递减,
所以,不满足题意.
当时,设,
因为,所以,

即,
所以在上单调递增,
又,所以时,恒成立,
即恒成立,
故存在,使得不等式在上恒成立,
此时的最小值是1.
【题目点拨】
本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.
20、(1);(2)1.
【解题分析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.
(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.
【题目详解】
(1)由题意,在中,因为,
由正弦定理,可得sinAsinB=sinBcosA,
又因为,可得sinB≠0,
所以sinA=cosA,即:tanA=,
因为A∈(0,π),所以A=;
(2)由(1)可知A=,且a=5,
又由△ABC的面积2=bcsinA=bc,解得bc=8,
由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,
整理得(b+c)2=49,解得:b+c=7,
所以△ABC的周长a+b+c=5+7=1.
【题目点拨】
本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
21、(1);(2).
【解题分析】
(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.
(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表达式,结合二次函数的性质求得的取值范围.
【题目详解】
(1)可知,

则,
又,
所以
解得
所以.
(2)据题意,直线的斜率必不为
所以设将直线方程代入椭圆的方程中,
整理得,

则①

因为
所以且
将①式平方除以②式得
所以
又解得
又,
所以
令,

所以
【题目点拨】
本小题主要考查直线和抛物线的位置关系,考查直线和椭圆的位置关系,考查向量数量积的坐标运算,考查向量模的坐标运算,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.
22、(1)(2)
【解题分析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求的值,所以可以考虑到根据余弦定理将分别用边表示,再根据正弦定理可以将转化为,于是可以求出的值;(2)首先根据求出角的值,根据第(1)问得到的值,可以运用正弦定理求出外接圆半径,于是可以将转化为,又因为角的值已经得到,所以将转化为关于的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角的值后,应用余弦定理及重要不等式,求出的最大值,当然,此时还要注意到三角形两边之和大于第三边这一条件.
试题解析:(1)由,
应用余弦定理,可得
化简得则
(2)

所以
法一. ,

=
=
=

法二
因为 由余弦定理
得,
又因为,当且仅当时“”成立.
所以
又由三边关系定理可知
综上
考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.

延伸阅读:

标签:

上一篇:河北省承德市双滦区实验中学2024-2025高三上学期10月月考数学试题(含答案)

下一篇:广西柳州高级高中2024-2025高一上学期10月月考试题 数学(含答案)