专题12 题新结构定义题(函数与导数部分)(典型题型归类训练)
1.(2024·广东茂名·统考一模)若函数在上有定义,且对于任意不同的,都有,则称为上的“类函数”.
(1)若,判断是否为上的“3类函数”;
(2)若为上的“2类函数”,求实数的取值范围;
(3)若为上的“2类函数”,且,证明:,,.
2.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)我国南北朝时期的数学家祖冲之(公元429年-500年)计算出圆周率的精确度记录在世界保持了千年之久,德国数学家鲁道夫(公元1540年-1610年)用一生精力计算出了圆周率的35位小数,随着科技的进步,一些常数的精确度不断被刷新.例如:我们很容易能利用计算器得出函数的零点的近似值,为了实际应用,本题中取的值为-0.57.哈三中毕业生创办的仓储型物流公司建造了占地面积足够大的仓库,内部建造了一条智能运货总干线,其在已经建立的直角坐标系中的函数解析式为,其在处的切线为,现计划再建一条总干线,其中m为待定的常数.
注明:本题中计算的最终结果均用数字表示.
(1)求出的直线方程,并且证明:在直角坐标系中,智能运货总干线上的点不在直线的上方;
(2)在直角坐标系中,设直线,计划将仓库中直线与之间的部分设为隔离区,两条运货总干线、分别在各自的区域内,即曲线上的点不能越过直线,求实数m的取值范围.
3.(2023上·安徽·高一校联考阶段练习)若在上的值域是的子集,则称函数在上是封闭的.
(1)若在上是封闭的,求实数的取值范围;
(2)若在上是封闭的,求实数的最大值.
4.(2023上·浙江宁波·高一效实中学校考期中)黎曼函数是一个特殊的函数,是德国著名数学家波恩哈德·黎曼发现并提出,在数学中有广泛的应用.黎曼函数定义在上,.
(1)请用描述法写出满足方程的解集;(直接写出答案即可)
(2)解不等式;
(3)探究是否存在非零实数,使得为偶函数?若存在,求k,b应满足的条件;若不存在,请说明理由.
6.(2023下·江苏南京·高二南京市中华中学校考期末)欧拉对函数的发展做出了巨大贡献,除特殊符号、概念名称的界定外,欧拉还基于初等函数研究了抽象函数的性质,例如,欧拉引入倒函数的定义:对于函数,如果对于其定义域中任意给定的实数,都有,并且,就称函数为倒函数.
(1)已知,,判断和是不是倒函数,并说明理由;
(2)若是上的倒函数,其函数值恒大于0,且在上是严格增函数.记,证明:是的充要条件.
7.(2023上·江苏连云港·高一校考期末)对于定义域为的函数,如果存在区间,同时满足下列两个条件:
①在区间上是单调的;
②当定义域是时,的值域也是,则称是函数的一个“黄金区间”.
(1)区间是函数的黄金区间,求,的值
(2)如果是函数的一个“黄金区间”,求的最大值
()
专题12题新结构定义题(函数与导数部分)(典型题型归类训练)
1.(2024·广东茂名·统考一模)若函数在上有定义,且对于任意不同的,都有,则称为上的“类函数”.
(1)若,判断是否为上的“3类函数”;
(2)若为上的“2类函数”,求实数的取值范围;
(3)若为上的“2类函数”,且,证明:,,.
【答案】(1)是上的“3类函数”,理由见详解.
(2)
(3)证明过程见详解.
【分析】(1)由新定义可知,利用作差及不等式的性质证明即可;
(2)由已知条件转化为对于任意,都有,,只需且,利用导函数研究函数的单调性和最值即可.
(3)分和两种情况进行证明,,用放缩法进行证明即可.
【详解】(1)对于任意不同的,
有,,所以,
,
所以是上的“3类函数”.
(2)因为,
由题意知,对于任意不同的,都有,
不妨设,则,
故且,
故为上的增函数,为上的减函数,
故任意,都有,
由可转化为,令,只需
,令,在单调递减,
所以,,故在单调递减,
,
由可转化为,令,只需
,令,在单调递减,
且,,所以使,即,
即,
当时,,,故在单调递增,
当时,,,故在单调递减,
,
故.
(3)因为为上的“2类函数”,所以,
不妨设,
当时,;
当时,因为,
,
综上所述,,,.
【点睛】不等式恒成立问题常见方法:①分离参数恒成立或恒成立;②数形结合(的图象在上方即可);③讨论最值或恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.
2.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)我国南北朝时期的数学家祖冲之(公元429年-500年)计算出圆周率的精确度记录在世界保持了千年之久,德国数学家鲁道夫(公元1540年-1610年)用一生精力计算出了圆周率的35位小数,随着科技的进步,一些常数的精确度不断被刷新.例如:我们很容易能利用计算器得出函数的零点的近似值,为了实际应用,本题中取的值为-0.57.哈三中毕业生创办的仓储型物流公司建造了占地面积足够大的仓库,内部建造了一条智能运货总干线,其在已经建立的直角坐标系中的函数解析式为,其在处的切线为,现计划再建一条总干线,其中m为待定的常数.
注明:本题中计算的最终结果均用数字表示.
(1)求出的直线方程,并且证明:在直角坐标系中,智能运货总干线上的点不在直线的上方;
(2)在直角坐标系中,设直线,计划将仓库中直线与之间的部分设为隔离区,两条运货总干线、分别在各自的区域内,即曲线上的点不能越过直线,求实数m的取值范围.
【答案】(1),证明见解析.
(2)
【分析】(1)求得,得到且,结合导数的几何意义,求得的直线方程,令,利用导数求得函数的单调性和最大值,得到,即可得到结论;
(2)令,求得,得到函数的单调性和最小值,令,化简得到,结合和,即可求解.
【详解】(1)解:由函数,可得,
则且,
所以的方程为,即
因为函数的零点的近似值,即,所以,
可得
又因为,所以的直线方程为
令
其中,则,令,解得,
当时,,单调递增;
当时,,单调递减,
所以当时,函数取得极大值,也为最大值,即,
所以在直角坐标系中,智能运货总干线上的点不在直线的上方.
(2)解:由曲线且,
令,
要使得两条运货总干线、分别在各自的区域内,则满足恒成立,
又由,令,可得,即,
当时,,单调递减;
当时,,单调递增,
当时,函数取得最小值,
最小值为,
令,即,
即,
即,
因为,可得,
又因为函数的零点的近似值,即,所以,
则,
又由,所以,
所以实数的取值范围是.
【点睛】方法点睛:应用函数知识求解实际应用问题的方法:
1、正确地将实际问题转化为函数模型,这是解答应用问题的关键,转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类.
2、用相关的函数知识,进行合理设计,确定最佳解题方案,进行数学上的计算求解.
3、把计算获得的结果回到实际问题中去解释实际问题,即对实际问题进行总结作答.
3.(2023上·安徽·高一校联考阶段练习)若在上的值域是的子集,则称函数在上是封闭的.
(1)若在上是封闭的,求实数的取值范围;
(2)若在上是封闭的,求实数的最大值.
【答案】(1)
(2)
【分析】(1)根据新的定义,即求二次函数在上的值域,利用分类讨论思想可得结果;
(2)根据新的定义,即求二次函数在上的值域,利用分类讨论思想建立不等关系可得结果.
【详解】(1)函数开口向上,对称轴是,
当时,,
因为在上是封闭的,
则有,解得;
当时,在上为减函数,则有,解得,又,故无解;
综上,的取值范围是
(2)函数开口向上,对称轴是,
当时,,
因为在上是封闭的,则有,解得,
依题意有,解得,
所以,
当时,在上为减函数,则有,
所以,即(舍去)
综上,的最大值是.
4.(2023上·浙江宁波·高一效实中学校考期中)黎曼函数是一个特殊的函数,是德国著名数学家波恩哈德·黎曼发现并提出,在数学中有广泛的应用.黎曼函数定义在上,.
(1)请用描述法写出满足方程的解集;(直接写出答案即可)
(2)解不等式;
(3)探究是否存在非零实数,使得为偶函数?若存在,求k,b应满足的条件;若不存在,请说明理由.
【答案】(1)为大于1的正整数
(2)
(3)存在,
【分析】(1)根据黎曼函数的定义,分类讨论求解;
(2)根据黎曼函数的定义,分类讨论求解;
(3)根据黎曼函数的定义,分类讨论可证得,则关于对称,即,则为偶函数,即可得解.
【详解】(1)依题意,,
当时,,则方程无解,
当为内的无理数时,,则方程无解,
当(为既约真分数)时,则,为大于1的正整数,
则由方程,解得,为大于1的正整数,
综上,方程的解集为为大于1的正整数.
(2)若或或为内无理数时,,
而,此时,
若(为既约真分数),则,为大于1的正整数,
由,得,解得,
又因为(为既约真分数),所以,
综上,不等式的解为.
(3)存在非零实数,使得为偶函数,即为偶函数,证明如下:
当或时,有成立,满足,
当为内的无理数时,也为内的无理数,所以,满足,
当(为既约真分数),则为既约真分数,
所以,满足,
综上,对任意,都有,
所以关于对称,即,则为偶函数,
所以,存在非零实数,使得为偶函数.
5.(2023上·贵州贵阳·高二统考期中)阅读材料:
差分和差商
古希腊的著名哲学家芝诺,曾经提出“飞矢不动”的怪论.他说箭在每一个时刻都有一个确定的位置,因而在每一时刻都没有动.既然每个时刻都没有动,他怎么能够动呢?为了驳倒这个怪论,就要抓住概念,寻根究底.讨论有没有动的问题,就要说清楚什么叫动,什么叫没有动.如果一个物体的位置在时刻u和后来的一个时刻v不同,我们就说他在时刻u和v之间动了,反过来,如果他在任意时刻有相同的位置,就说它在u到v这段时间没有动.这样,芝诺怪论的漏洞就暴露出来了.原来,动或不动都是涉及两个时刻的概念.芝诺所说“在每一个时刻都没有动”的论断是没有意义的!函数可以用来描述物体的运动或变化.研究函数,就是研究函数值随自变量变化而变化的规律.变化的情形至少要看两个自变量处的值,只看一点是看不出变化的.设函数在实数集上有定义.为了研究的变化规律,需要考虑它在中两点处的函数值的差.定义(差分和差商)称为函数从到的差分,这里若无特别说明,均假定.通常记叫做差分的步长,可正可负.差分和它的步长的比值叫做在和的差商.显然,当和位置交换时,差分变号,差商不变.随着所描述的对象不同,差商可以是平均速度,可以是割线的斜率,也可以是曲边梯形的平均高度.一般而言,当时,它是在区间上的平均变化率.显然,函数和它的差商有下列关系:某区间上,单调递增函数的差商处处为正,反之亦然;某区间上,单调递减函数的差商处处为负,反之亦然.可见,差商是研究函数性质的一个有用的工具.回答问题:
(1)计算一次函数的差商.
(2)请通过计算差商研究函数的增减性.
【答案】(1)
(2)函数在和递减,在递增
【分析】(1)由材料根据差商定义式求解即可;
(2)求解差商,分区间讨论差商符号,根据材料即可判断单调性.
【详解】(1)一次函数的定义域内任取,且,
差商为,
一次函数的差商处处为;
(2)函数的定义域为,设,
计算在的差商为,
当时,,
从而,故函数在递减;
当,,
从而,故函数在递减;
当时,则,
从而,故函数在递增;
综上所述,函数在和递减,在递增.
6.(2023下·江苏南京·高二南京市中华中学校考期末)欧拉对函数的发展做出了巨大贡献,除特殊符号、概念名称的界定外,欧拉还基于初等函数研究了抽象函数的性质,例如,欧拉引入倒函数的定义:对于函数,如果对于其定义域中任意给定的实数,都有,并且,就称函数为倒函数.
(1)已知,,判断和是不是倒函数,并说明理由;
(2)若是上的倒函数,其函数值恒大于0,且在上是严格增函数.记,证明:是的充要条件.
【答案】(1)是倒函数,不是倒函数;理由见解析
(2)证明见解析
【分析】(1)根据倒函数的定义判断可得答案;
(2)根据倒函数的性质,先证充分性,再证必要性即可,
【详解】(1)对于,定义域为,显然定义域中任意实数有成立,又,
是倒函数,
对于,定义域为,
故当时,,不符合倒函数的定义,
所以不是倒函数;
(2)因为,又是上的倒函数,
所以,所以,
故,
充分性:当时,且,又在上是严格增函数,
所以,,
所以,,故.
必要性:当时,
有
,
又恒大于0,所以,
因为,所以,
因为在上是严格增函数.所以,即有成立.
综上所述:是的充要条件.
7.(2023上·江苏连云港·高一校考期末)对于定义域为的函数,如果存在区间,同时满足下列两个条件:
①在区间上是单调的;
②当定义域是时,的值域也是,则称是函数的一个“黄金区间”.
(1)区间是函数的黄金区间,求,的值
(2)如果是函数的一个“黄金区间”,求的最大值
【答案】(1),
(2)
【分析】(1)根据函数增减性,判断求出,;
(2) 在和上均为增函数,将其转化为是方程的两个同号的实数根,结合二次函数与韦达定理求解问题.
【详解】(1)因为区间是函数的黄金区间,是增函数,
所以,解得;
(2)由在和上均为增函数,
已知在“黄金区间”上单调,
所以或,且在上为单调递增,
则同理可得,
即是方程的两个同号的实数根
人教版2024-2025学年三年级数学上册
第四单元《万以内的加减法(二)》4.1加法课后提升同步练习
学校:___________姓名:___________班级:___________
一、选择题
1.(23-24三年级上·河北衡水·期末)576+248的和( )。
A.比1000大 B.比700小 C.比900小
2.(23-24三年级上·江西宜春·期末)一本书有398页,小明第一天看了87页,第二天看了105页,第三天应该从第( )页看起。
A.206 B.192 C.193
3.(23-24三年级上·河北石家庄·期末)妈妈带了558元,购买( )中的2件商品,可以满足满500减50的活动,使带的钱正好。
A.电磁炉339元,电压力锅269元 B.电风扇328元,烤箱348元
C.电饭锅209元,豆浆机291元
4.(23-24三年级上·浙江杭州·期中)“440+○=404+□”,比较○和□的大小( )。
A.○>□ B.○<□ C.○=□
5.(23-24三年级上·云南昭通·期末)三位数加四位数的和是( )。
A.三位数 B.四位数 C.四位数或五位数
6.(23-24三年级上·全国·单元测试)一捆电线长1千米,第一次用去285米,第二次用去432米,这捆电线比原来短了( )。
A.283米 B.617米 C.717米
7.(23-24三年级上·全国·单元测试)如图所示,竖式中圈起来的1表示( )。
A.1个百 B.1个十 C.1个一
8.(23-24三年级上·福建福州·期末)下面的竖式与右图的得数不一样的算式是( )。(每种图形表示一个不同的数字)
A. B. C.
9.(23-24三年级上·新疆吐鲁番·期末)下面哪个算式中的个位相加不需要进位( )。
A.671+322 B.413+587 C.229+85
10.(22-23三年级上·湖南长沙·开学考试)一个数是三百多,另一个数是二百多,它们的和( )。
A.一定大于600 B.一定在500和700之间 C.一定在500和600之间
二、填空题
11.(23-24三年级上·广西百色·期中)82比( )多20,比355多24的数是( )。
12.(23-24三年级上·湖北黄石·期中)用4、2、6组成的三位数中,最大的三位数和最小的三位数和是( )。
13.(23-24三年级上·贵州铜仁·期末)23+38< 0, 里最小能填( ); 00<368+236,里最大能填( )。
14.(22-23三年级上·河北衡水·期末)估算298+403时,可以把298看作( ),把403看作( ),结果大约是( )。
15.(23-24三年级上·福建福州·期末)在方框里填上合适的数,使它是三位数加三位数的算式,并且各位上都不进位。
三、判断题
16.(20-21三年级上·陕西商洛·期中)笔算万以内数的加减法时,要把数位对齐,从高位算起。( )
17.(23-24三年级上·全国·期末)两个三位数相加,和一定比任何一个加数都大。( )
18.(23-24三年级上·湖北襄阳·期末)两个三位数相加,和不可能是四位数。( )
19.(21-22三年级上·山东济宁·期末)装苹果需要310个箱子,梨需要205个箱子,准备500个箱子够了。( )
20.(23-24三年级上·河北承德·期末)检查265+148=413是否正确,可以用148+265来验算. ( )
四、计算题
21.(24-25三年级上·全国·课后作业)列竖式计算。
497+603= 405+398= 357+569= 421+784=
五、连线题
22.(23-24三年级上·全国·课后作业)连一连。
六、解答题
23.(23-24三年级上·全国·课后作业)一台微波炉售价为463元,一个电饭煲售价为325元,买一台微波炉和一个电饭煲一共要花多少元?
24.(23-24三年级上·全国·课后作业)星期天上午,小玲要去买书、买食品,然后回家。小玲可以怎样走?走哪条路最近?
25.学校倡导节约资源,矿水瓶不乱丢,这是某学校一周收集到的废瓶。三个年级一共收集了多少个废矿水瓶?
26.某电影院有500个座位,阳光希望小学一年级有328名学生,二年级有245名学生。如果这两个年级的学生同时来电影院看电影,电影院的座位够吗?
()
1.C
【分析】可直接计算出576+248的得数,然后仔细看选项判断正误即可。
【详解】576+248=824
A.比1000大,824比1000小,不符合题意;
B.比700小,824比700大,不符合题意;
C.比900小,824比900小,符合题意。
故答案为:C
2.C
3.A
【分析】
分别计算出各个选项两件商品的价钱和,两件商品的价钱和等于558加50,这两件商品就符合要求,据此即可解答。
【详解】558+50=608(元)
A.339+269=608(元)
B.328+348=676(元)
C.209+291=500(元)
购买A中的2件商品,可以满足满500减50的活动,使带的钱正好。
故答案为:A
4.B
【分析】根据“一个加数+另一个加数=和”可知,如果两个加法算式的和相等,那么其中一个加数越大,另一个加数就越小。据此解题即可。
【详解】440+○=404+□
440>404
所以,○<□。
故答案为:B
5.C
【分析】分别用最小的三位数100加上最小的四位数1000,最大的三位数999加上最大的四位数9999,进行计算即可;据此解答。
【详解】根据分析:100+1000=1100,999+9999=10998,所以三位数加四位数的和是四位数或五位数。
故答案为:C
6.C
【分析】第一次用去的电线长度加上第二次用去的电线长度,即可算出这捆电线比原来短了(285+432)米。
【详解】285+432=717(米)
一捆电线长1千米,第一次用去285米,第二次用去432米,这捆电线比原来短了717米。
故答案为:C
7.A
【分析】笔算加法时,相同数位要对齐,从个位算起,哪一位上的数相加满十,就向前一位进一。竖式中十位上的8与6的和是14,十位上的数字满十,向百位进一,所以竖式中圈起来的进位“1”表示1个百,据此解答即可。
【详解】竖式中圈起来的1表示1个百。
故答案为:A
8.C
【分析】要两个算式中每个数位上的数字相同,这两个算式的得数就一样,据此即可解答。
【详解】
的算式中,个位上是☆和,十位上是和△,百位上是○。
A.的算式中,个位上是☆和,十位上是和△,百位上是○, 和各个数位上的数字相同,所以两个算式的得数相同。
B.的算式中,个位上是☆和,十位上是和△,百位上是○,所以和各个数位上的数字相同,所以两个算式的得数相同。
C.的算式中,个位上是☆和,十位上是和○,百位上是△, 和的百位和十位上的数不相同,所以两算式的得数不相同。
故答案为:C
9.A
【分析】计算加法时,相同数位要对齐,从个位算起,哪一位上的数相加满十,就向前一位进一;据此将每个选项中两个加数的个位上的数相加,找出不需要进位的即可。
【详解】A.1+2=3,个位相加不需要进位;
B.3+7=10,个位相加满十,需要向十位进一;
C.9+5=14,个位相加满十,需要向十位进一;
所以,上面671+322算式中的个位相加不需要进位。
故答案为:A
10.B
【分析】一个数是三百多,另一个数是二百多,可举例子说明它们的和在什么范围。
【详解】一个数是三百多,另一个数是二百多。
这两个数最小是301和201,和是:301+201=502;
这两个数最大是399和299,和是:399+299=698;
所以它们的和一定在500和700之间。
故答案为:B
11. 62 379
【分析】82比一个数多20,要求这个数是多少,用82减去20即可解答;
要求比355多24的数是多少,用355加24即可解答。
【详解】82-20=62
355+24=379
所以,82比62多20,比355多24的数是379。
12.888
【分析】组成最大的三位数,可将指定的数字按照从大到小的顺序从高位到低位排下来;组成的三位数最小,要把指定的数字按照从小到大的顺序从高位到低位排下来;再将两个数相加即可。
【详解】因为6>4>2,所以组成的最大三位数是642;因为2<4<6,所以组成的最小三位数是246。
最大的三位数和最小的三位数和是642+246=888。
13. 7 6
【分析】根据题意,先计算出不等式两边的结果,再根据不等号确定是大于还是小于这个结果,最后根据题目要求填上合适的数字即可。
【详解】23+38=61,所以 可以填7、8、9,最小能填7;
368+236=604, 可以填1、2、3、4、5、6,最大能填6。
14. 300 400 700
【分析】估算时,把数看作相近的整十、整百数,再计算。据此解答即可。
【详解】298≈300
403≈400
298+403
≈300+400
=700
所以估算298+403时,可以把298看作300,把403看作400,结果大约是700。
15.210、200、110、100
【分析】要求各位上不进位,则每个位上的数相加都小于10,据此解答即可。
【详解】个位:0+9=9,9<10,个位上为0;
十位:1+8=9,9<10,0+8=8,8<10,十位上为1或0;
百位:2+7=9,9<10,1+7=8,8<10,百位上为2或1。
这个三位数可以是210、200、110、100。
16.×
【分析】整数加法计算时,相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。据此解答即可。
【详解】笔算万以内数的加减法时,要把数位对齐,从个位算起。
故答案为:×。
【点睛】本题考查整数加法的计算方法,需熟练掌握。
17.√
【分析】根据“加数+加数=和”及用举例的方法来判断此题的对错。
【详解】由题意分析得:
100+100=200,200>100;
999+999=1998,1998>999;
100+999=1099,1099>999且1099>100。
即,两个三位数相加,和一定比任何一个加数都大;此说法正确。
故答案为:√
18.×
【分析】根据题意,计算两个最大的三位数相加的和,即计算999+999,即可验证。
【详解】999+999=1998
1998是四位数,即两个三位数相加,和可能是四位数。所以原题说法错误。
故答案为:×
19.×
【分析】根据加法的意义,先算出装苹果和装梨一共需要多少个箱子,再跟500个箱子进行比较大小,即可得出答案。
【详解】310+205=515(个)
515个>500个,所以不够,原题说法错误。
故答案为:×
【点睛】本题考查学生对整数加法以及整数比较大小的掌握和运用。
20.√
【解析】略
21.1100;803;926;1205
【分析】三位数加三位数,把相同数位对齐,从个位加起,哪一位相加满十就向前一位进1;据此计算。
【详解】497+603=1100 405+398=803 357+569=926 421+784=1205
22.见详解
【分析】根据三位数与三位数的加法的计算法则,相同数位要对齐,把计算结果连起来即可。
【详解】连线如下:
【点睛】本题主要考查的是三位数和三位数以及三位数和两位数的加法的计算,计算过程要细心认真。
23.788元
【分析】由题意得,一台微波炉售价为463元,一个电饭煲售价为325元,求买一台微波炉和一个电饭煲一共要花多少元,直接把它们的价钱加起来即可。
【详解】463+325=788(元)
答:买一台微波炉和一个电饭煲一共要花788元。
24.小玲有两种走法,从家出发到邮局再到书店,然后回到邮局,再到超市,最后回家,这条路最近。
【分析】根据对途中路线的观察,找到最近的路线,将几段距离相加,找到最近的距离。
【详解】走法不唯一,走法一:小玲家→邮局→书店→超市→小玲家。走法二:小玲家→邮局→书店→邮局→超市→小玲家。因为75+329=404米<440米,所以从书店回到邮局,再到超市,比从书店直接到超市近,因为410+125=535米>510米,所以从超市直接回家,比从超市经过街心花园回家近。综上可知,最近路线:小玲家→邮局→书店→邮局→超市→小玲家。
答:小玲有两种走法,从家出发到邮局再到书店,然后回到邮局,再到超市,最后回家,这条路最近。
【点睛】本题主要考查的是三位数和三位数之间的不进位加法,计算过程一定要细心认真。
25.661个
【分析】由题意得,将三个年级收集的废瓶相加,即可求出三个年级一共收集了多少个废矿水瓶。据此解答。
【详解】196+225+240
=421+240
=661(个)
答:三个年级一共收集了661个废矿水瓶。
26.不够
【分析】把两个年级的学生数相加求出总人数,把总人数与座位总数比较后判断座位够不够即可。
【详解】328+245=573(名)
573>500
答:电影院的座位不够。
()