2024-2025学年四年级数学上册典型例题系列
第三单元专练篇·05:角度计算问题”进阶版“
一、填空题。
1.如图,如∠1=65°,那么∠3=( ),∠2=( ),∠4=( ),∠5=( )。
【答案】 25°/25度 90°/90度 25°/25度 155°/155度
【分析】由图可知,∠1和∠3组成了直角,直角为90°,所以用90°减去∠1的度数即可求出∠3的度数,∠2为直角,∠3与∠4相对,所以∠3=∠4,∠4与∠5组成了平角,平角为180°,所以用180°减去∠4的度数即可求出∠5的度数。
【详解】∠3=90°-∠1=90°-65°=25°
∠2=90°
∠4=∠3=25°
∠5=180°-∠4=180°-25°=155°
2.下图中,如果∠1=55°,那么∠2=( ),∠3=( ),∠4=( )。
【答案】 125°/125度 55°/55度 35°/35度
【分析】1平角是180°,因此∠2=180°-∠1;a∥b,则∠3=∠1;1直角=90°,则∠4=180°-90°-∠3,依此计算并解答。
【详解】∠2=180°-55°=125°
∠3=∠1=55°
∠4=180°-90°-55°=90°–55°=35°
∠2=125°,∠3=55°,∠4=35°。
3.下面是一张长方形纸折后的图形,。
( )°。
【答案】50
【分析】如详解图所示,把一张长方形纸折后,形成的∠2=∠3,∠1、∠2和∠3组成平角,平角是180°的角,所以∠1=180°-∠2-∠3,已知∠3=∠2=65°,代入数据即可解答。
【详解】
∠1=180°-∠2-∠3
=180°-65°-65°
=115°-65°
=50°
4.如图,已知∠1=30°。
∠2=( )°,∠3=( )°。
【答案】 60 120
【分析】观察图中可知,∠1与∠2组成一个直角,直角=90°,已知∠1=30°,因此用90°减去∠1的度数,即可求得∠2的度数,∠2和∠3组成一个平角,平角=180°,因此用180°减去∠2的度数,即可求得∠3的度数。
【详解】因为∠1+∠2=90°,∠1=30°,
所以∠2=90°-∠1=90°-30°=60°,
因为∠2+∠3=180°,∠2=60°,
所以∠3=180°-∠2=180°-60°=120°。
5.把一个三角尺如图所示放置,那么∠1=( )°,∠2=( )°
【答案】 60 120
【分析】根据直角三角尺的内角角度分别是90°、60°、30°,平角是180°,图中标出一个直角,那么三角尺的30°角和∠1组成一个直角,让90°-30°即可求解∠1;∠2和三角尺的60°角组成一个平角,让180°-60°即可求解∠2,据此解答。
【详解】∠1=90°-30°=60°
∠2=180°-60°=120°
把一个三角尺如图所示放置,那么∠1=(60)°,∠2=(120)°
6.如图,沿着一条直线摆了一副三角尺,∠2=45°,则∠1=( )°,∠3=( )°。
【答案】 45 135
【分析】观察图形可知,∠1与∠2组成了一个直角,所以∠1=90°-∠2;∠2与∠3组成了一个平角,据此利用∠2的度数即可求出∠3=180°-∠2。
【详解】∠1=90°-∠2=90°-45°=45°;
∠3=180°-∠2=180°-45°=135°。
7.如图中,∠2是一个( )角,∠1=( ),∠3=( )。
【答案】 直 165 40
【分析】等于90°的角是直角,等于180°的角是平角。∠1和15°的角拼成一个平角,∠1=180°-15°。∠3和50°的角拼成一个直角,∠3=90°-50°。
【详解】180°-15°=165°
90°-50°=40°
如图中,∠2是一个直角,∠1=165°,∠3=40°。
8.图中,120°,( )°,( )°。
【答案】 120 60
【分析】观察图形可知,∠1与∠4组成一个平角,∠2与∠3组成一个平角,所以,∠4=180°-60°=120°,∠2=180°-120°=60°。
【详解】∠4=180°-60°=120°
∠2=180°-120°=60°
所以,120°,60°。
9.如图所示,在长方形ABCD中已知∠1=80°,∠5=40°。那么∠3=( )、∠6=( )。
【答案】 80° 50°
【分析】∠1和∠2组成平角,平角是180°,已知∠1的度数,∠2=180°-∠1;
∠2和∠3组成平角,平角是180°,已知∠2的度数,∠3=180°-∠2;
长方形的四个角都是直角,∠5和∠6组成直角,直角是90°,已知∠5的度数,∠6=90°-∠5,依此解答即可。
【详解】因为∠1=80°,所以,∠2=180°-80°=100°;
∠3=180°-∠2=180°-100°=80°;
因为∠5=40°,所以,∠6=90°-40°=50°;
在长方形ABCD中已知∠1=80°,∠5=40°。那么∠3=80°、∠6=50°。
10.如下图,这是一张三角形纸折起来以后形成的图形,已知∠1=80°,∠2=65°,那么∠3=( )°,∠4=( )°。
【答案】 80 50
【分析】由于∠3是∠1经过折叠得到的角,所以∠3=∠1=80°。同理,∠2折叠后得到的那个角(∠2和∠4中间的角)应该也和∠2相等,都是65°,它们和∠4一起构成了一个平角,据此解答。
【详解】∠3=∠1=80°
∠4=180°-65°-65°=115°-65°=50°
故∠3=80°,∠4=50°。
11.将两个完全相同的长方形叠起来(如下图),已知∠1+∠2+∠3=108°,则∠3=( )°,∠2=( )°。
【答案】 18 72
【分析】根据题意可知,∠2与∠1拼成一个直角,∠2与∠3拼成一个直角,直角是90°,因此∠1+∠2=90°,∠3+∠2=90°,(∠1+∠2)+(∠3+∠2)=180°,用180°减去∠1、∠2、∠3的和,即可求出∠2度数;用90°减去∠2的度数,即可求出∠3的度数,据此解答。
【详解】(∠1+∠2)+(∠3+∠2)
=90°+90°
=180°
∠2=180°-(∠1+∠2+∠3)
=180°-108°
=72°
∠3+∠2=90°
∠3=90°-∠2
=90°-72°
=18°
将两个完全相同的长方形叠起来(如下图),已知∠1+∠2+∠3=108°,则∠3=(18)°,∠2=(72)°。
12.如图,将长方形的一角折叠起来。已知,( )°。
【答案】40
【分析】长方形的四个角都是直角,将长方形的一角折叠起来,折叠前和折叠后所形成的图形是完全相同可以完全重合的,故折叠后所形成的角跟∠1的大小是一样的,再加上∠2后的度数之和为90°,据此可以求出∠2的度数。
【详解】∠2+2×25°=90°
∠2+50°=90°
∠2=90°-50°
∠2=40°
二、解答题。
13.如图是一个三角形纸片折叠后的平面图形,折痕为DE,已知:∠B=74°,∠A=70°,∠CEB=20°,那么∠ADC等于多少度?
【答案】92°
【分析】首先,画出叠前的三角形ABF,如下图,根据三角形内角和是180°,可以用180°减去∠B和∠A的度数,求出∠F的度数;折叠前后,角度数不变,所以∠C的角度等于∠F的度数;根据三角形内角和是180°,用180°减去∠C和∠CEB的度数,求出∠CKE的度数;根据∠CKE加上∠CKB是一个平角,所以用180°减去∠CKE的度数,就是∠CKB的度数;根据∠BKD加上∠CKB是一个平角,所以用180°减去∠CKB的度数,就是∠BKD的度数;最后根据四边形的内角和是360°,用360°减去∠B、∠A和∠BKD,得到的就是∠ADC的度数。
【详解】如下图,做出折叠前的三角形ABF:
因为三角形的内角和是180°,所以
因为,所以;
因为三角形的内角和是180°,所以
因为平角等于180°,所以;
因为平角等于180°,所以;
因为四边形的内角和是360°,所以
答:∠ADC等于92°。
14.从平角的顶点引两条射线,把平角分成三个角,使是的3倍,是的5倍,则、、分别是多少度?
【答案】∠1=20°;∠2=60°;∠3=100°
【分析】∠2是∠1的3倍,∠3是∠1的5倍,则∠1+∠2+∠3=∠1+∠1×3+∠1×5=∠1×9,∠1、∠2、∠3拼成平角,平角=180°,用180°除以9即可算出∠1的度数,∠1的度数乘3即可算出∠2的度数,∠1的度数乘5即可算出∠3的度数。
【详解】∠1=180°÷(1+3+5)
=180°÷(4+5)
=180°÷9
=20°
∠2=∠1×3
=20°×3
=60°
∠3=∠1×5
=20°×5
=100°
答:∠1是20°,∠2是60°,∠3是100°。
15.如图,已知∠1=48°,求∠2和∠5的度数。
【答案】∠2是42°,∠5是132°
【分析】观察发现∠1+∠2=90°,那么∠2=90°-∠1;∠1+∠5=180°,那么∠5=180°-∠1;据此解答。
【详解】∠2=90°-48°=42°
∠5=180°-48°=132°
答:∠2的度数是42°,∠5的度数是132°。
16.测量∠1的度数,并通过计算求出∠2的度数(要求有计算过程,写出算式)。
∠1=( )°、∠2=( )。
【答案】70;80°
计算过程见详解
【分析】量角器的使用方法。两合一看,两合是指中心点与角的顶点重合;0刻度线与角的一边重合。一看就是要看角的另一边所对的量角器的刻度。看角的度数时要注意是看外刻度还是内刻度。角的开口向左看外刻度线,角的开口向右看内刻度线。
根据角的度量方法,测量∠1的度数,然后根据∠1+∠2+30°=180°,∠2=180°-30°-∠1,解答即可。
【详解】测量可知∠1=70°。
∠2=180°-30°-70°
=150°-70°
=80°
即∠1=70°、∠2=80°。
17.如图,把一张长方形纸折起来后,已知∠1=20°,求∠2是多少度?
【答案】∠2=140°
【分析】把长方形纸折起来的部分展开,可以发现2个∠1加1个∠2等于平角,平角等于180°,已知∠1=20°,所以∠2=180°-20°-20°=140°;据此解答即可。
【详解】据分析可知:
因为2∠1+∠2=180°,
所以∠2=180°-20°-20°
=160°-20°
=140°
答:∠2=140°。
18.按给出的时间在钟面上画角,并填写是什么角。
3点 3点30分 4点
( )角 ( )角 ( )角
【答案】图见详解过程
直;锐;钝
【分析】3点,时针指向3,分针指向12;3点30分,时针指向3和4之间,分针指向6;4点,时针指向4,分针指向12;据此画出;
再根据锐角、直角、钝角、平角和周角的意义:大于0°小于90°的角叫做锐角,等于90°的角叫做直角,大于90°小于180°的角叫做钝角,平角等于180°,周角等于360°;据此进行判定即可。
【详解】如图所示:
【点睛】此题主要考查时刻的辨认,以及角的分类的灵活应用。
19.如图,在长方形ABCD中已知∠1=80°,∠5=40°。分别求出∠2、∠3和∠6的度数。
【答案】100°;80°;50°
【分析】∠1和∠2组成平角,平角是180°,∠2=180°-∠1;
∠2和∠3组成平角,平角是180°,∠3=180°-∠2;
长方形的四个角是直角为90°,∠6=90°-∠5,依此解答即可。
【详解】因为∠1=80°,所以,∠2=180°-80°=100°;
∠3=180°-∠2=180°-100°=80°;
因为∠5=40°,所以,∠6=90°-40°=50°;
答:∠2=100°;∠3=80°;∠6=50°。
【点睛】明白平角和直角的度数,找到对应组成的角是解题关键。
20.下面是一张长方形纸折起来以后形成的图形,已知:∠1和一个145°的角正好可拼成一个平角,求∠1和∠2的度数。
【答案】∠1=35°;∠2=20°
【分析】1直角=90°,1平角=180°,根据题意可知:∠1+145°=180°,因此∠1=180°-145°;∠1+∠1+∠2=90°,因此用90°减去2个∠1即可得到∠2的度数,依此计算。
【详解】∠1=180°-145°=35°;
35°+35°=70°
90°-70°=20°
答:∠1=35°,∠2=20°。
【点睛】此题考查的是角的分类与换算,熟练掌握平角、直角的特点是解答此题的关键。
21.如下图,ABCD是四边形。先数一数图中一共有几个锐角、几个直角、几个钝角,再求出∠1+∠3的度数。
【答案】7个锐角;2个直角;4个钝角;90°
【分析】观察上图可知,单个锐角有7个;经测量∠ABC=90°,所以∠ABC是直角,∠2是直角,共有2个直角;一个锐角和直角组成的钝角有2个,∠BCD是由两个锐角组成的钝角,单个钝角有1个,钝角共有4个;∠1、∠2、∠3组成一个平角,∠2是直角,所以180°减∠2等于∠1+∠3;据此即可解答。
【详解】根据分析可知,一共有7个锐角、2个直角、4个钝角。
∠2=90°
∠1+∠2+∠3=180°
∠1+∠3=180°-∠2
∠1+∠3=180°-90°
∠1+∠3=90°
【点睛】本题主要考查学生对角的分类知识的掌握和灵活运用。
22.如下图,已知∠1+∠2=∠3,请说明为何∠5=∠1+∠2。
【答案】见详解
【分析】观察上图可知,∠5和∠4组成一个平角,∠3和∠4也组成一个平角,这样角可得出∠5等于∠3,据此即可解答。
【详解】因为∠3+∠4=180°,∠4+∠5=180°,所以∠3=∠5;
又因为∠3=∠1+∠2,所以∠5=∠1+∠2。
【点睛】根据相邻角之间的关系进行解答。
()
2024-2025学年四年级数学上册典型例题系列
第三单元专练篇·05:角度计算问题”进阶版“
一、填空题。
1.如图,如∠1=65°,那么∠3=( ),∠2=( ),∠4=( ),∠5=( )。
2.下图中,如果∠1=55°,那么∠2=( ),∠3=( ),∠4=( )。
3.下面是一张长方形纸折后的图形,。
( )°。
4.如图,已知∠1=30°。
∠2=( )°,∠3=( )°。
5.把一个三角尺如图所示放置,那么∠1=( )°,∠2=( )°
6.如图,沿着一条直线摆了一副三角尺,∠2=45°,则∠1=( )°,∠3=( )°。
7.如图中,∠2是一个( )角,∠1=( ),∠3=( )。
8.图中,120°,( )°,( )°。
9.如图所示,在长方形ABCD中已知∠1=80°,∠5=40°。那么∠3=( )、∠6=( )。
10.如下图,这是一张三角形纸折起来以后形成的图形,已知∠1=80°,∠2=65°,那么∠3=( )°,∠4=( )°。
11.将两个完全相同的长方形叠起来(如下图),已知∠1+∠2+∠3=108°,则∠3=( )°,∠2=( )°。
12.如图,将长方形的一角折叠起来。已知,( )°。
二、解答题。
13.如图是一个三角形纸片折叠后的平面图形,折痕为DE,已知:∠B=74°,∠A=70°,∠CEB=20°,那么∠ADC等于多少度?
14.从平角的顶点引两条射线,把平角分成三个角,使是的3倍,是的5倍,则、、分别是多少度?
15.如图,已知∠1=48°,求∠2和∠5的度数。
16.测量∠1的度数,并通过计算求出∠2的度数(要求有计算过程,写出算式)。
∠1=( )°、∠2=( )°。
17.如图,把一张长方形纸折起来后,已知∠1=20°,求∠2是多少度?
18.按给出的时间在钟面上画角,并填写是什么角。
3点 3点30分 4点
( )角 ( )角 ( )角
19.如图,在长方形ABCD中已知∠1=80°,∠5=40°。分别求出∠2、∠3和∠6的度数。
20.下面是一张长方形纸折起来以后形成的图形,已知:∠1和一个145°的角正好可拼成一个平角,求∠1和∠2的度数。
21.如下图,ABCD是四边形。先数一数图中一共有几个锐角、几个直角、几个钝角,再求出∠1+∠3的度数。
22.如下图,已知∠1+∠2=∠3,请说明为何∠5=∠1+∠2。
()