2024年中考数学真题分类卷--专题18 三角形及全等三角形(原卷版+解析版)


专题18 三角形及全等三角形(40题)
一、单选题
1.(2024·陕西·中考真题)如图,在中,,是边上的高,E是的中点,连接,则图中的直角三角形有( )

A.2个 B.3个 C.4个 D.5个
【答案】C
【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.
【详解】解:由图得,,,为直角三角形,
共有4个直角三角形.
故选:C.
2.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段一定是的( )
A.角平分线 B.高线 C.中位线 D.中线
【答案】B
【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得,从而可得答案.
【详解】解:由作图可得:,
∴线段一定是的高线;
故选B
3.(2024·黑龙江齐齐哈尔·中考真题)将一个含角的三角尺和直尺如图放置,若,则的度数是( )
A. B. C. D.
【答案】B
【分析】本题考查了对顶角的性质,三角形内角和定理.根据对顶角相等和三角形的内角和定理,即可求解.
【详解】解:如图所示,
由题意得,,,
∴,
故选:B.
4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为( )
A. B. C. D.
【答案】C
【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出的长;设圆心为O,连接,在中,可用半径表示出的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.
【详解】解:∵是线段的垂直平分线,
∴直线经过圆心,设圆心为,连接.
中,,
根据勾股定理得:
,即:

解得:;
故轮子的半径为,
故选:C.
5.(2024·云南·中考真题)已知是等腰底边上的高,若点到直线的距离为3,则点到直线的距离为( )
A. B.2 C.3 D.
【答案】C
【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.
由等腰三角形“三线合一”得到平分,再角平分线的性质定理即可求解.
【详解】解: 如图,
∵是等腰底边上的高,
∴平分,
∴点F到直线,的距离相等,
∵点到直线的距离为3,
∴点到直线的距离为3.
故选:C.
6.(2024·四川凉山·中考真题)如图,在中,垂直平分交于点,若的周长为,则( )
A. B. C. D.
【答案】C
【分析】本题考查了线段垂直平分线的的性质,由线段垂直平分线的的性质可得,进而可得的周长,即可求解,掌握线段垂直平分线的的性质是解题的关键.
【详解】解:∵垂直平分,
∴,
∴的周长,
故选:.
7.(2024·四川眉山·中考真题)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连接,则的周长为( )
A.7 B.8 C.10 D.12
【答案】C
【分析】本题考查了尺规作图—作垂直平分线,根据垂直平分线的性质即可证明,根据的周长,即可求出答案.
【详解】解:由作图知,垂直平分,

的周长,
,,
的周长,
故选:C.
8.(2024·湖北·中考真题)平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为( )
A. B. C. D.
【答案】B
【分析】本题考查坐标系下的旋转.过点和点分别作轴的垂线,证明,得到,,据此求解即可.
【详解】解:过点和点分别作轴的垂线,垂足分别为,
∵点的坐标为,
∴,,
∵将线段绕点顺时针旋转得到,
∴,,
∴,
∴,
∴,,
∴点的坐标为,
故选:B.
9.(2024·北京·中考真题)下面是“作一个角使其等于”的尺规作图方法.
(1)如图,以点为圆心,任意长为半径画弧,分别交,于点,; (2)作射线,以点为圆心,长为半径画弧,交于点;以点为圆心,长为半径画弧,两弧交于点; (3)过点作射线,则.
上述方法通过判定得到,其中判定的依据是( )
A.三边分别相等的两个三角形全等
B.两边及其夹角分别相等的两个三角形全等
C.两角及其夹边分别相等的两个三角形全等
D.两角分别相等且其中一组等角的对边相等的两个三角形全等
【答案】A
【分析】根据基本作图中,判定三角形全等的依据是边边边,解答即可.
本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是解题的关键.
【详解】解:根据上述基本作图,可得,
故可得判定三角形全等的依据是边边边,
故选A.
10.(2024·广东广州·中考真题)下列图案中,点为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点对称的是( )
A. B. C. D.
【答案】C
【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点判断即可.
【详解】解:由图形可知,阴影部分的两个三角形关于点对称的是C,
故选:C.
11.(2024·青海·中考真题)如图,平分,点P在上,,,则点P到的距离是( )
A.4 B.3 C.2 D.1
【答案】C
【分析】本题考查了角平分线的性质定理.过点P作于点E,根据角平分线的性质可得,即可求解.
【详解】解:过点P作于点E,
∵平分,,,
∴,
故选:C.
12.(2024·四川凉山·中考真题)一副直角三角板按如图所示的方式摆放,点在的延长线上,当时,的度数为( )

A. B. C. D.
【答案】B
【分析】本题考查平行线的性质,三角形的外角的性质,掌握平行线的性质,是解题的关键.证明,再利用,进行求解即可.
【详解】解:由题意,得:,
∵,
∴,
∴;
故选B.
13.(2024·天津·中考真题)如图,中,,以点为圆心,适当长为半径画弧,交于点,交于点;再分别以点为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在的内部相交于点;画射线,与相交于点,则的大小为( )

A. B. C. D.
【答案】B
【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出,由作图得,由三角形的外角的性质可得,故可得答案
【详解】解:∵,
∴,
由作图知,平分,
∴,


故选:B
14.(2024·四川宜宾·中考真题)如图,在中,,以为边作,,点D与点A在的两侧,则的最大值为( )
A. B. C.5 D.8
【答案】D
【分析】如图,把绕顺时针旋转得到,求解,结合,(三点共线时取等号),从而可得答案.
【详解】解:如图,把绕顺时针旋转得到,
∴,,,
∴,
∵,(三点共线时取等号),
∴的最大值为,
故选D
【点睛】本题考查的是勾股定理的应用,旋转的性质,三角形的三边关系,二次根式的乘法运算,做出合适的辅助线是解本题的关键.
15.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线为的平分线的有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.
【详解】解:第一个图为尺规作角平分线的方法,为的平分线;
第二个图,由作图可知:,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
∴为的平分线;
第三个图,由作图可知,
∴,,

∴,
∴为的平分线;
第四个图,由作图可知:,,
∴为的平分线;
故选D.
16.(2024·安徽·中考真题)在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是( )
A. B.
C. D.
【答案】D
【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.
利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得结论.
【详解】解:A、连接,

∵,,,
∴,

又∵点F为的中点
∴,故不符合题意;
B、连接,

∵,,,
∴,
∴,
又∵点F为的中点,
∴,
∵,
∴,
∴,
∴,
∴,故不符合题意;
C、连接,

∵点F为的中点,
∴,
∵,,
∴,
∴, ,
∵,,
∴,
∴,
∴,
∴,故不符合题意;
D、,无法得出题干结论,符合题意;
故选:D.
17.(2024·浙江·中考真题)如图,正方形由四个全等的直角三角形和中间一个小正方形组成,连接.若,则( )
A.5 B. C. D.4
【答案】C
【分析】本题考查了勾股定理,正方形的性质,全等三角形的信纸,求得的长度,利用勾股定理即可解答,利用全等三角形的性质得到是解题的关键.
【详解】解:是四个全等的直角三角形,
,,

四边形为正方形,


故选:C.
18.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程的两个根,则这个三角形的周长为(  )
A.或 B.或 C. D.
【答案】C
【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得,,根据三角形的三边关系可得等腰三角形的底边长为,腰长为,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.
【详解】解:由方程得,,,
∵,
∴等腰三角形的底边长为,腰长为,
∴这个三角形的周长为,
故选:.
二、填空题
19.(2024·四川成都·中考真题)如图,,若,,则的度数为 .
【答案】/100度
【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出,再利用三角形内角和求出的度数即可.
【详解】解:由,,
∴,
∵,
∴,
故答案为:
20.(2024·甘肃临夏·中考真题)如图,在中,点的坐标为,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是 .
【答案】
【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点在第一象限(不与点重合),且与全等,画出图形,结合图形的对称性可直接得出.
【详解】解:∵点在第一象限(不与点重合),且与全等,
∴,,
∴可画图形如下,
由图可知点C、D关于线段的垂直平分线对称,则.
故答案为:.
21.(2024·黑龙江牡丹江·中考真题)如图,中,D是上一点,,D、E、F三点共线,请添加一个条件 ,使得.(只添一种情况即可)
【答案】或(答案不唯一)
【分析】本题考查全等三角形的判定和性质,解答本题的关键是明确题意,利用全等三角形的判定解答.根据题目中的条件和全等三角形的判定,可以写出添加的条件,注意本题答案不唯一.
【详解】解:∵
∴,,
∴添加条件,可以使得,
添加条件,也可以使得,
∴;
故答案为:或(答案不唯一).
22.(2024·四川凉山·中考真题)如图,中,是边上的高,是的平分线,则的度数是 .
【答案】/100度
【分析】本题考查了三角形内角和以及外角性质、角平分线的定义.先求出,结合高的定义,得,因为角平分线的定义得,运用三角形的外角性质,即可作答.
【详解】解:∵,
∴,
∵是边上的高,
∴,
∴,
∵是的平分线,
∴,
∴.
故答案为:.
23.(2024·江苏连云港·中考真题)如图,直线,直线,,则 .
【答案】30
【分析】本题考查平行线的性质,三角形的外角性质,根据两直线平行,同位角相等,求出的度数,根据三角形的外角的性质,得到,即可求出的度数.
【详解】解:∵,
∴,
∵,
∴,
∴;
故答案为:30.
24.(2024·黑龙江绥化·中考真题)如图,,,.则 .
【答案】66
【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得,根据三角形的外角的性质可得,根据平行线的性质,即可求解.
【详解】解:∵,,
∴,
∴,
∵,
∴,
故答案为:.
25.(2024·黑龙江绥化·中考真题)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则 .
【答案】/度
【分析】本题考查了轴对称最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作点P关于,的对称点.连接.则当,是与,的交点时,的周长最短,根据对称的性质结合等腰三角形的性质即可求解.
【详解】解:作关于,的对称点.连接.则当,是与,的交点时,的周长最短,连接,
关于对称,
∴,
同理,,,
,,
是等腰三角形.

故答案为:.
26.(2024·四川广元·中考真题)点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为 .

【答案】/18度
【分析】连接,,根据正多边形的性质可证,得到,进而得到是的垂直平分线,即,根据多边形的内角和公式可求出每个内角的度数,进而得到,再根据三角形的内角和定理即可解答.
【详解】解:连接,,

∵五边形是正五边形,
∴,
∴,
∴,
∵点F是的中点,
∴是的垂直平分线,
∴,
∵在正五边形中,,
∴,
∴.
故答案为:
【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.
27.(2024·湖南·中考真题)如图,在锐角三角形中,是边上的高,在,上分别截取线段,,使;分别以点E,F为圆心,大于的长为半径画弧,在内,两弧交于点P,作射线,交于点M,过点M作于点N.若,,则 .
【答案】6
【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知平分,根据角平分线的性质可知,结合求出,.
【详解】解:作图可知平分,
∵是边上的高,,,
∴,
∵,
∴,
∴,
故答案为:6.
28.(2024·重庆·中考真题)如图,在中,延长至点,使,过点作,且,连接交于点.若,,则 .
【答案】
【分析】先根据平行线分线段成比例证,进而得,,再证明,得,从而即可得解.
【详解】解:∵,过点作,,,
∴,,
∴,
∴,
∴,
∵,
∴,,
∵,
∴,
∵,,
∴,
∴,
∴,
∴,
故答案为:,
【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.
29.(2024·陕西·中考真题)如图,在中,,E是边上一点,连接,在右侧作,且,连接.若,,则四边形的面积为 .
【答案】60
【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点作,,根据等边对等角结合平行线的性质,推出,进而得到,得到,进而得到四边形的面积等于,设,勾股定理求出的长,再利用面积公式求出的面积即可.
【详解】解:∵,
∴,
∵,
∴,
∴,
∴平分,
过点作,,
则:,
∵,且,
∴,
∴四边形的面积,
∵,
∴,
设,则:,
由勾股定理,得:,
∴,
解:,
∴,
∴,
∴四边形的面积为60.
故答案为:60.
30.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第一象限交于点H,画射线,若,则 .
【答案】2
【分析】此题主要考查了角平分线的尺规作图和性质,坐标与图形的性质,根据作图方法可得点H在第一象限的角平分线上,根据角平分线的性质和第一象限内点的坐标符号可得答案.
【详解】解:根据作图方法可得点H在第一象限角平分线上;点H横纵坐标相等且为正数;

解得:,
故答案为:.
31.(2024·四川内江·中考真题)如图,在中,,,,则的度数为 ;

【答案】/100度
【分析】本题考查三角形的内角和定理,等腰三角形的性质,角的和差.
根据三角形的内角和可得,根据,得到,,从而,根据角的和差有,即可解答.
【详解】解:∵,
∴,
∵,,
∴,,

∴.
故答案为:
三、解答题
32.(2024·四川乐山·中考真题)知:如图,平分,.求证:.
【答案】见解析
【分析】利用证明,即可证明.
【详解】解:平分,

在和中,



【点睛】本题主要考查全等三角形的判定与性质,熟练掌握、、、等全等三角形的判定方法是解题的关键.
33.(2024·四川内江·中考真题)如图,点、、、在同一条直线上,,,
(1)求证:;
(2)若,,求的度数.
【答案】(1)见解析
(2)
【分析】本题主要考查了全等三角形的判定与性质,熟练地掌握全等三角形的判定和性质是解决本题的关键.
(1)先证明,再结合已知条件可得结论;
(2)证明,再结合三角形的内角和定理可得结论.
【详解】(1)证明:∵
∴,即
∵,

(2)∵,,
∴,
∵,

34.(2024·江苏盐城·中考真题)已知:如图,点A、B、C、D在同一条直线上,,.
若________,则.
请从①;②;③这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.
【答案】①或③(答案不唯一),证明见解析
【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,再由全等三角形的判定和性质得出,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.
【详解】解:选择①;
∵,,
∴,
∵,
∴,
∴,
∴,即;
选择②;
无法证明,
无法得出;
选择③;
∵,
∴,
∵, ,
∴,
∴,
∴,即;
故答案为:①或③(答案不唯一)
35.(2024·广西·中考真题)如图,在中,,.
(1)尺规作图:作线段的垂直平分线l,分别交,于点D,E:(要求:保留作图痕迹,不写作法,标明字母)
(2)在(1)所作的图中,连接,若,求的长.
【答案】(1)见详解
(2)
【分析】(1)分别以A、B为圆心,大于为半径画弧,分别交,于点D,E,作直线,则直线l即为所求.
(2)连接,由线段垂直平分线的性质可得出,由等边对等角可得出,由三角形内角和得出,则得出为等腰直角三角形,再根据正弦的定义即可求出的长.
【详解】(1)解:如下直线l即为所求.
(2)连接如下图:
∵为线段的垂直平分线,
∴,
∴,
∴,
∴为等腰直角三角形,
∴,

【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.
36.(2024·四川南充·中考真题)如图,在中,点D为边的中点,过点B作交的延长线于点E.
(1)求证:.
(2)若,求证:
【答案】(1)见解析
(2)见解析
【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:
(1)由中点,得到,由,得到,即可得证;
(2)由全等三角形的性质,得到,进而推出垂直平分,即可得证.
【详解】(1)证明:为的中点,


在和中,

(2)证明:
垂直平分,

37.(2024·云南·中考真题)如图,在和中,,,.
求证:.
【答案】见解析
【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“”证明,即可解决问题.
【详解】证明:,
,即,
在和中,


38.(2024·江苏苏州·中考真题)如图,中,,分别以B,C为圆心,大于长为半径画弧,两弧交于点D,连接,,,与交于点E.
(1)求证:;
(2)若,,求的长.
【答案】(1)见解析
(2)
【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:
(1)直接利用证明即可;
(2)利用全等三角形的性质可求出,利用三线合一性质得出,,在中,利用正弦定义求出,即可求解.
【详解】(1)证明:由作图知:.
在和中,

(2)解:,,

又,
,.



39.(2024·黑龙江绥化·中考真题)已知:.
(1)尺规作图:画出的重心.(保留作图痕迹,不要求写作法和证明)
(2)在(1)的条件下,连接,.已知的面积等于,则的面积是______.
【答案】(1)见解析
(2)
【分析】本题考查了三角形重心的性质,尺规画垂线;
(1)分别作的中线,交点即为所求;
(2)根据三角形重心的性质可得,根据三角形中线的性质可得
【详解】(1)解:如图所示
作法:①作的垂直平分线交 于点
②作的垂直平分线交于点
③连接、相交于点
④标出点 ,点 即为所求
(2)解:∵是的重心,


∵的面积等于,

又∵是的中点,

故答案为:.
40.(2024·福建·中考真题)如图,已知直线.
(1)在所在的平面内求作直线,使得,且与间的距离恰好等于与间的距离;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若与间的距离为2,点分别在上,且为等腰直角三角形,求的面积.
【答案】(1)见解析;
(2)的面积为1或.
【分析】本题主要考查基本作图,平行线的性质,全等三角形的判定,勾股定理以及分类讨论思想:
(1)先作出与的垂线,再作出夹在间垂线段的垂直平分线即可;
(2)分;;三种情况,结合三角形面积公式求解即可
【详解】(1)解:如图,
直线就是所求作的直线.
(2)①当时,
,直线与间的距离为2,且与间的距离等于与间的距离,根据图形的对称性可知:,


②当时,
分别过点作直线的垂线,垂足为,

,直线与间的距离为2,且与间的距离等于与间的距离,

,,
,,

在中,由勾股定理得,


③当时,同理可得,.
综上所述,的面积为1或.
精品试卷·第 2 页 (共 2 页)
()
专题18 三角形及全等三角形(40题)
一、单选题
1.(2024·陕西·中考真题)如图,在中,,是边上的高,E是的中点,连接,则图中的直角三角形有( )

A.2个 B.3个 C.4个 D.5个
2.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段一定是的( )
A.角平分线 B.高线 C.中位线 D.中线
3.(2024·黑龙江齐齐哈尔·中考真题)将一个含角的三角尺和直尺如图放置,若,则的度数是( )
A. B. C. D.
4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为( )
A. B. C. D.
5.(2024·云南·中考真题)已知是等腰底边上的高,若点到直线的距离为3,则点到直线的距离为( )
A. B.2 C.3 D.
6.(2024·四川凉山·中考真题)如图,在中,垂直平分交于点,若的周长为,则( )
A. B. C. D.
7.(2024·四川眉山·中考真题)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连接,则的周长为( )
A.7 B.8 C.10 D.12
8.(2024·湖北·中考真题)平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为( )
A. B. C. D.
9.(2024·北京·中考真题)下面是“作一个角使其等于”的尺规作图方法.
(1)如图,以点为圆心,任意长为半径画弧,分别交,于点,; (2)作射线,以点为圆心,长为半径画弧,交于点;以点为圆心,长为半径画弧,两弧交于点; (3)过点作射线,则.
上述方法通过判定得到,其中判定的依据是( )
A.三边分别相等的两个三角形全等
B.两边及其夹角分别相等的两个三角形全等
C.两角及其夹边分别相等的两个三角形全等
D.两角分别相等且其中一组等角的对边相等的两个三角形全等
10.(2024·广东广州·中考真题)下列图案中,点为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点对称的是( )
A. B. C. D.
11.(2024·青海·中考真题)如图,平分,点P在上,,,则点P到的距离是( )
A.4 B.3 C.2 D.1
12.(2024·四川凉山·中考真题)一副直角三角板按如图所示的方式摆放,点在的延长线上,当时,的度数为( )

A. B. C. D.
13.(2024·天津·中考真题)如图,中,,以点为圆心,适当长为半径画弧,交于点,交于点;再分别以点为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在的内部相交于点;画射线,与相交于点,则的大小为( )

A. B. C. D.
14.(2024·四川宜宾·中考真题)如图,在中,,以为边作,,点D与点A在的两侧,则的最大值为( )
A. B. C.5 D.8
15.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线为的平分线的有( )
A.1个 B.2个 C.3个 D.4个
16.(2024·安徽·中考真题)在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是( )
A. B.
C. D.
17.(2024·浙江·中考真题)如图,正方形由四个全等的直角三角形和中间一个小正方形组成,连接.若,则( )
A.5 B. C. D.4
18.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程的两个根,则这个三角形的周长为(  )
A.或 B.或 C. D.
二、填空题
19.(2024·四川成都·中考真题)如图,,若,,则的度数为 .
20.(2024·甘肃临夏·中考真题)如图,在中,点的坐标为,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是 .
21.(2024·黑龙江牡丹江·中考真题)如图,中,D是上一点,,D、E、F三点共线,请添加一个条件 ,使得.(只添一种情况即可)
22.(2024·四川凉山·中考真题)如图,中,是边上的高,是的平分线,则的度数是 .
23.(2024·江苏连云港·中考真题)如图,直线,直线,,则 .
24.(2024·黑龙江绥化·中考真题)如图,,,.则 .
25.(2024·黑龙江绥化·中考真题)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则 .
26.(2024·四川广元·中考真题)点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为 .

27.(2024·湖南·中考真题)如图,在锐角三角形中,是边上的高,在,上分别截取线段,,使;分别以点E,F为圆心,大于的长为半径画弧,在内,两弧交于点P,作射线,交于点M,过点M作于点N.若,,则 .
28.(2024·重庆·中考真题)如图,在中,延长至点,使,过点作,且,连接交于点.若,,则 .
29.(2024·陕西·中考真题)如图,在中,,E是边上一点,连接,在右侧作,且,连接.若,,则四边形的面积为 .
30.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第一象限交于点H,画射线,若,则 .
31.(2024·四川内江·中考真题)如图,在中,,,,则的度数为 ;

三、解答题
32.(2024·四川乐山·中考真题)知:如图,平分,.求证:.
33.(2024·四川内江·中考真题)如图,点、、、在同一条直线上,,,
(1)求证:;
(2)若,,求的度数.
34.(2024·江苏盐城·中考真题)已知:如图,点A、B、C、D在同一条直线上,,.
若________,则.
请从①;②;③这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.
35.(2024·广西·中考真题)如图,在中,,.
(1)尺规作图:作线段的垂直平分线l,分别交,于点D,E:(要求:保留作图痕迹,不写作法,标明字母)
(2)在(1)所作的图中,连接,若,求的长.
36.(2024·四川南充·中考真题)如图,在中,点D为边的中点,过点B作交的延长线于点E.
(1)求证:.
(2)若,求证:
37.(2024·云南·中考真题)如图,在和中,,,.
求证:.
38.(2024·江苏苏州·中考真题)如图,中,,分别以B,C为圆心,大于长为半径画弧,两弧交于点D,连接,,,与交于点E.
(1)求证:;
(2)若,,求的长.
39.(2024·黑龙江绥化·中考真题)已知:.
(1)尺规作图:画出的重心.(保留作图痕迹,不要求写作法和证明)
(2)在(1)的条件下,连接,.已知的面积等于,则的面积是______.
40.(2024·福建·中考真题)如图,已知直线.
(1)在所在的平面内求作直线,使得,且与间的距离恰好等于与间的距离;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若与间的距离为2,点分别在上,且为等腰直角三角形,求的面积.
精品试卷·第 2 页 (共 2 页)
()

延伸阅读:

标签:

上一篇:2024年中考数学真题分类卷--专题12 一次函数及其应用(原卷版+解析版)

下一篇:2024年中考数学真题分类卷--专题23 圆的有关位置关系(原卷版+解析版)