(暑假应用题专项)圆易错例题精讲、跟踪训练-数学五年级下册苏教版
易错例题精讲
1.有一个圆形花坛,直径是16米,在它的周围修建一条2米宽的小路。这条小路的面积是多少?(圆周率取值3.14) 【答案】113.04平方米 【分析】小路形状是个圆环,花坛直径÷2=小圆半径,小圆半径+小路宽=大圆半径,根据圆环面积=圆周率×(大圆半径的平方-小圆半径的平方),列式解答即可。 【详解】16÷2=8(米) 8+2=10(米) 3.14×(102-82) =3.14×(100-64) =3.14×36 =113.04(平方米) 答:这条小路的面积是113.04平方米。 【点睛】关键是掌握并灵活运用圆环面积公式。 2.琴琴妈妈在淘宝上买了一个三层角柜(如图),正好可以摆放在客厅的90°墙角处,这个角柜可以放置物品的面积是多少平方厘米? 【答案】942平方厘米 【分析】每个扇形的圆心角都是90°,那么每个这样的扇形的面积相当于半径是20厘米的圆面积的四分之一,根据圆的面积公式:,求出圆的面积再除以4即可计算出一层的面积,再乘3即可。 【详解】3.14×202÷4×3 =3.14×400÷4×3 =1256÷4×3 =314×3 =942(平方厘米) 答:这个角柜可以放置物品的面积是942平方厘米。 【点睛】此题主要考查圆的面积公式的灵活运用,关键是熟记公式。 3.如图,长方形的宽是4厘米,空白部分是一个半圆。 (1)求半圆的周长。 (2)求阴影部分的面积。 【答案】(1)20.56厘米 (2)6.88平方厘米 【分析】(1)长方形的宽是4厘米,那这个半圆的半径是4厘米,根据圆的周长公式C=2πr,半圆的周长为即可。 (2)用长方形面积减去半圆面积即可得到阴影部分的面积。 【详解】(1) (厘米) 答:半圆的周长为20.56厘米。 (2) (平方厘米) 答:阴影部分的面积为6.88平方厘米。 【点睛】本题主要考查的是圆的周长与面积公式,以及长方体的面积公式,观察图形,长方形面积减去半圆面积是解决阴影部分面积的关键。
跟踪训练
1.一个等边三角形和一个圆的周长相等。已知等边三角形的一条边长是6.28厘米。这个圆的半径是多少?
2.一根长188.4厘米的绳子,正好在一棵树上绕了10圈。这棵树的横截面的直径约是多少厘米?面积呢?
3.在一个直径是16米的圆心花坛周围,有一条宽为2米的小路围绕,小路的面积是多少平方米?
4.用一根胶带将2瓶“可口可乐”饮料罐如图所示捆一圈,饮料罐底面直径是6厘米。(π值取3.14)
(1)这根胶带至少需要多少厘米?(接头处忽略)
(2)这根胶带围成的平面图形面积是多少平方厘米?
5.下面是一个隧道横截面,上部分是一个半圆,下部分是一个长方形(如图),求这个隧道口横截面的周长和面积.
6.先在长6cm,宽4cm的长方形里面画一个最大的圆,再求挖去圆后剩下的面积是多少平方厘米.
7.一个标准跑道的全长是400米,弯道最内圈的半径是36米,每条跑道宽1.2米,现有4条跑道。如果进行400米赛跑,第3道运动员的起跑线应比第1道运动员的起跑线提前多少米?
8.如图,横截面半径是0.2米的圆柱形油桶,从车厢的后端滚到前端共要5周。车厢长多少米?
9.把6根圆柱形钢管用铁丝分别捆成如图所示的形状(从底部看),若接头处不计,每种捆法至少需要多少分米长的铁丝?哪种方法更省钱?
10.一个钟面的分针长6厘米,时针长4厘米。从凌晨4:00到凌晨5:00,分针针尖划过多少厘米?从中午12:00到下午6:00,时针划过多少厘米?
11.七星湖公园里有一块圆形草地,周长是31.4米,工人要在草地的正中心安装一个自动喷水装置。现有射程是5米和10米的两种自动喷水装置,请你帮忙算一下,选射程是多少米的自动喷水装置合适?
12.一个玩具模型如图,中间是一个边长为4厘米的正方形,与这个正方形每条边相连的都是圆心角为的扇形。这个玩具模型的面积是多少平方厘米?
13.如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等。图中阴影部分的周长是多少厘米?
14.蒙古包是蒙古族的特色建筑,在蒙古包的围毡上有箍紧的3条围绳。搭一个下图这样的蒙古包,需要围绳共多少米(门的宽度忽略不计)?这个蒙古包占地多少平方米?
15.手工课上,小华从一张长20厘米,宽12厘米的长方形纸上剪下一个最大的圆,这个圆的周长是多少厘米?剩下的面积是多少平方厘米?
16.李大爷用9.42米长的篱笆靠墙角围了一个最大的养鸡场(如图所示),这个养鸡场的面积是多少平方米?
17.王大叔家有一块正方形地,边长20米。他把这块地分成了5部分(如图),其中4部分种上果树,中间涂色部分用来养鸡。养鸡的地方面积是多少平方米?如果要把养鸡的地方围一圈栅栏,需要多少米栅栏?
18.光明小学有一个花坛(如图),正方形的边长为9米,正方形的顶点正好是四个圆的圆心,圆的半径是3米。这个花坛的面积是多少平方米?
参考答案:
1.3厘米
【分析】首先根据三角形的周长公式,求出这个等边三角形的周长,又知一个圆的周长和这个等边三角形的周长相等,再根据圆的周长公式:C=2πr,那么r=C÷2÷π,把数据代入公式解答。
【详解】6.28×3÷3.14÷2
=18.84÷3.14÷2
=6÷2
=3(厘米)
答:这个圆的半径是3厘米。
【点睛】此题主要考查三角形的周长公式、圆的周长公式的灵活运用,关键是熟记公式。
2.6厘米;28.26平方厘米
【分析】先用188.4÷10计算出绕树的树干1圈的长度,即树干的周长,根据圆的周长公式:C=2πr,求出半径进而得出直径。在根据圆的面积公式:S=πr2,把数据代入公式解答。
【详解】188.4÷10÷3.14
=18.84÷3.14
=6(厘米)
3.14×(6÷2)2
=3.14×9
=28.26(平方厘米)
答:这棵树的横截面的直径约是6厘米,面积是28.26平方厘米。
【点睛】解答此题的关键是先计算出树的树干1圈的长度,继而根据圆的直径和圆周率和周长的关系进行解答。
3.113.04平方米
【详解】小路内圆的半径:16÷2=8(米)
小路外圆的半径:8+2=10(米)
3.14×(102-82)
=3.14×(100-64)
=3.14×36
=113.04(平方米)
答:小路的面积是113.04平方米。
4.(1)30.84厘米;
(2)64.26平方厘米
【分析】
所需胶带的长度等于一个直径6厘米的圆的周长加上两条直径的长度;这根胶带围成的平面形面积等于一个直径为6厘米的圆的面积加上一个边长为6厘米的正方形的面积;据此解答。
【详解】(1)3.14×6+2×6
=18.84+12
=30.84(厘米)
答:这根胶带至少需要30.84厘米。
(2)3.14×(6÷2)2+6×6
=3.14×32+36
=3.14×9+36
=28.26+36
=64.26(平方厘米)
答:这根胶带围成的平面图形面积是64.26平方厘米。
5.周长:142.8米 面积:1428平方米
【详解】周长:20×π×2÷2+20+20+40=142.8(米)
面积:π×20×20÷2+20×40=200π+800=1428(平方米)
6.如图,面积是11.44平方厘米
【详解】试题分析:如果在长6cm,宽4cm的长方形里面一个最大的圆,那么这个圆的直径就是4厘米;由直径求出半径,代入面积公式就可以求出圆的面积,又因剩下的面积=长方形的面积﹣圆的面积,据此解答即可.
解:由题意知,在长6cm,宽4cm的长方形里面一个最大的圆,那么这个圆的直径就是4厘米;如下图所示:
r=4÷2=2(厘米),
所以圆的面积为:
S=πr2,
=3.14×22,
=12.56(平方厘米),
剩下的面积为:6×4﹣12.56,
=24﹣12.56,
=11.44(平方厘米);
答:剩下的面积是11.44平方厘米.
点评:此题考查了在长方形内画一个最大的圆的方法,关键是明白长方形内最大圆的直径应等于长方形的宽.
7.15.072米
【分析】根据题意可知,跑道一共有两个弯道,合起来就是一个圆,用第3个圆的周长与第一个圆的周长差就是3道运动员的起跑线应比第1道运动员的起跑线提前米数;第1跑道的半径是36+1.2米,第3跑道的半径是36+1.2×3米;根据圆的周长公式:周长=π×半径×2,分别求出第1跑道的周长和第3跑道的周长,再用第3跑到的周长-第1跑道的周长,即可解答。
【详解】3.14×(36+1.2×3)×2-3.14×(36+1.2)×2
=3.14×(36+3.6)×2-3.14×37.2×2
=3.14×39.6×2-116.808×2
=124.344×2-233.616
=248.688-233.616
=15.072(米)
答:第3道运动员的起跑线应比第1道运动员的起跑线提前15.072米。
【点睛】熟练掌握圆的周长公式是解答本题的关键,注意先求出各跑道的半径。
8.6.68米
【分析】如图可知:车厢的长应为半径为0.2米的5个圆的周长与一条直径的和,根据直径是半径的2倍,周长=2r求出油桶滚动一周的长,进而求出5周的长,然后加上一条直径的和即可。
【详解】2×3.14×0.2×5+0.2×2
=6.28×0.2×5+0.4
=1.256×5+0.4
=6.28+0.4
=6.68(米)
答:车厢长6.68米。
【点睛】此题考查了圆周长计算公式在实际生活中的应用,应注意,最后要加上圆的一条直径的长度。
9.见详解
【分析】观察图示可知,6个圆柱体按第一种捆法捆时,铁丝的长度就是一个圆的周长(C=πd)加上10个圆的直径;6个圆柱体按第二种捆法捆时,铁丝的长度就是1个圆的周长(C=πd)加上6个圆的直径;据此解答。
【详解】第一种捆法:
2×10+3.14×2
=20+6.28
=26.28(分米)
第二种捆法:
2×6+3.14×2
=12+6.28
=18.28(分米)
第二种捆法比第一种捆法更节省铁丝,故更省钱。
答:第一种捆法需要26.28分米,第二种捆法需要18.28分米,第二种捆法更省钱。
【点睛】解决本题的关键是观察分析得到每类圆柱管的放置规律,以及圆周长的计算方法,一个圆柱体是绳子的长度就是圆的周长,以后每增加一个圆柱体,绳子的长度就会增加2个圆的直径。
10.37.68厘米;12.56厘米
【分析】从凌晨4:00到凌晨5:00,分针针尖划过的面形成一个圆,圆的半径就是分针的长度,求得这个圆的周长,即是分针针尖划过的长度。从中午12:00到下午6:00,时针划过的面形成一个半圆,半圆的半径是时针的长度,求得这个半圆圆弧的周长,即是时针划过的长度。根据圆的周长=半径×2×3.14列式计算即可。
【详解】6×2×3.14
=12×3.14
=37.68(厘米)
4×2×3.14÷2
=4×3.14
=12.56(厘米)
答:分针针尖划过37.68厘米;时针划过12.56厘米。
【点睛】此题考查了圆的周长公式的灵活应用。因此,掌握圆的周长计算公式是解答的关键。
11.5米
【分析】
圆周长=2πr,那么将圆周长除以3.14再除以2,即可求出圆的半径。根据圆的半径,选出合适射程的自动喷水装置。
【详解】31.4÷3.14÷2=5(米)
答:选射程是5米的自动喷水装置合适。
12.66.24平方厘米
【分析】看图可知,4个扇形可以拼成一个完整的圆,圆的半径=正方形边长,玩具模型的面积=圆的面积+正方形面积,圆的面积=圆周率×半径的平方,正方形面积=边长×边长,据此列式解答。
【详解】3.14×42+4×4
=3.14×16+16
=50.24+16
=66.24(平方厘米)
答:这个玩具模型的面积是66.24平方厘米。
13.20.5厘米
【分析】根据观察图形可知,设圆半径为r,长方形的长为h;根据圆的周长公式: 求出圆的半径,然后根据长方形和圆的面积相等,利用长方形的面积公式:长×宽和圆的面积公式:,列式得出长方形的长,再根据阴影周长=长方形周长-两条半径长+圆弧长,利用长方形周长=(长+宽)乘2即可解答。
【详解】设圆半径为r,长方形的长为h。
由图可知,长方形的宽=r
圆的半径:16.4÷2÷π
=8.2÷π
=
圆的面积=长方形的面积
πr=hr
π×()=h×
=h×
h=8.2
阴影周长:(8.2+)×2-×2+×16. 4
=16.4+×2-×2+4.1
=20.5(厘米)
答:图中阴影部分的周长是20.5厘米。
【点睛】此题关键在于分析出阴影部分的组成部分,然后根据已学几何公式分步求出需要用到的数据条件。
14.282.6米;706.5平方米
【分析】围一圈需要的围绳长度为直径是30米的圆的周长,根据C=πd,先求出一条围绳的长度,有3条围绳,再乘3即可;根据圆的面积=πr2,圆的面积即为蒙古包的占地面积。
【详解】
(米)
(平方米)
答:搭一个这样的蒙古包,需要围绳共282.6米,这个蒙古包占地706.5平方米。
15.37.68厘米;126.96平方厘米
【分析】在长方形纸上剪下一个最大的圆,这个最大的圆的直径是长方形的直径,也就是12厘米,根据圆周长公式:C=πd,用3.14×12即可求出圆周长;根据圆面积公式:S=πr2,用3.14×(12÷2)2即可求出圆的面积,再根据长方形的面积公式,用20×12求出长方形纸的面积,最后用长方形纸的面积减去圆的面积,即可求出剩下的面积。据此解答。
【详解】3.14×12=37.68(厘米)
3.14×(12÷2)2
=3.14×62
=3.14×36
=113.04(平方厘米)
20×12=240(平方厘米)
240-113.04=126.96(平方厘米)
答:这个圆的周长是37.68厘米;剩下的面积是126.96平方厘米。
【点睛】本题考查了圆周长公式和圆面积公式的灵活应用,要熟练掌握公式。
16.28.26平方米
【分析】观察图形可知,这个圆平均分成了4份,其中一份的圆的弧长是9.42米,由此可知,用9.42×4,求出这个圆的周长;根据周长公式:周长=π×半径×2;半径=周长÷π÷2,代入数据,求出圆的半径,再根据圆的面积公式:面积=π×半径2,代入数据,求出这个圆的面积,再除以4,即可求出这个养鸡场的面积,据此解答。
【详解】9.42×4÷3.14÷2
=37.68÷3.14÷2
=12÷2
=6(米)
3.14×62÷4
=113.04÷4
=28.26(平方米)
答:这个养鸡场的面积是28.26平方米。
【点睛】解答本题的关键明确这个圆被平均分成了4份,进而利用圆的周长公式和面积公式进行解答。
17.86平方米;62.8米
【分析】图形阴影部分的面积=正方形的面积-四个四分之一圆的面积(即直径为正方形边长的圆的面积),四分之一圆的半径等于正方形边长的一半,据此求解;阴影部分的周长=四个四分之一圆的周长(直径为正方形边长的圆的周长);根据圆的面积公式:S=πr2,周长公式:C=πd(2πr)代入数据从而求解。
【详解】20×20-3.14×(20÷2)2
=400-3.14×102
=400-3.14×100
=400-314
=86(平方米)
3.14×20=62.8(米)
答:养鸡的地方面积是86平方米,如果要把养鸡的地方围一圈栅栏,需要62.8米栅栏。
【点睛】解答此题的关键是弄清楚阴影部分的组成,利用其他图形的面积转化出阴影部分的面积,从问题得解。
18.165.78平方米
【分析】观察图形可知,该花坛的面积=正方形的面积+3个半径是3米圆的面积,根据正方形的面积=边长×边长,圆的面积公式:S=πr2,据此代入数值进行计算即可。
【详解】9×9+3.14×32×3
=81+3.14×9×3
=81+84.78
=165.78(平方米)
答:这个花坛的面积是165.78平方米。
【点睛】本题考查组合图形的面积,明确正方形覆盖了1个圆的面积是解题的关键。
精品试卷·第 2 页 (共 2 页)
()