2025版新教材高考数学第二轮复习专题练--5.2 复数(含答案)


2025版新教材高考数学第二轮复习
5.2 复数
五年高考
高考新风向
1.(2024新课标Ⅰ,2,5分,易)若=1+i,则z= (  )
A.-1-i  B.-1+i  C.1-i  D.1+i
2.(2024新课标Ⅱ,1,5分,易)已知z=-1-i,则|z|=   (  )
A.0  B.1  C.  D.2
3.(2024全国甲理,1,5分,易)若z=5+i,则i(+z)= (  )
A.10i  B.2i  C.10  D.2
考点1 复数的概念
1.(2023新课标Ⅱ,1,5分,易)在复平面内,(1+3i)·(3-i)对应的点位于 (  )
A.第一象限  B.第二象限
C.第三象限  D.第四象限
2.(2021新高考Ⅱ,1,5分,易)在复平面内,复数对应的点位于 (  )
A.第一象限  B.第二象限
C.第三象限  D.第四象限
3.(2020课标Ⅲ理,2,5分,易)复数的虚部是 (  )
A.-  B.-  C.  D.
4.(2023全国乙文,1,5分,易)|2+i2+2i3|= (  )
A.1  B.2  C.  D.5
5.(2023全国甲理,2,5分,易)设a∈R,(a+i)(1-ai)=2,则a= (  )
A.-2  B.-1  C.1  D.2
6.(2022全国乙理,2,5分,易)已知z=1-2i,且z+a+b=0,其中a,b为实数,则 (  )
A.a=1,b=-2  B.a=-1,b=2
C.a=1,b=2  D.a=-1,b=-2
7.(2020课标Ⅱ理,15,5分,中)设复数z1,z2满足|z1|=|z2|=2,z1+z2=+i,则|z1-z2|=    .
考点2 复数的运算
1.(2020新高考Ⅱ,2,5分,易)(1+2i)(2+i)= (  )
A.-5i  B.5i  C.-5  D.5
2.(2022新高考Ⅱ,2,5分,易)(2+2i)(1-2i)= (  )
A.-2+4i  B.-2-4i  C.6+2i  D.6-2i
3.(2022新高考Ⅰ,2,5分,易)若i(1-z)=1,则z+= (  )
A.-2  B.-1  C.1  D.2
4.(2021新高考Ⅰ,2,5分,易)已知z=2-i,则z(+i)= (  )
A.6-2i  B.4-2i  C.6+2i  D.4+2i
5.(2020新高考Ⅰ,2,5分,易)= (  )
A.1  B.-1  C.i  D.-i
6.(2023新课标Ⅰ,2,5分,易)已知z=,则z-= (  )
A.-i  B.i  C.0  D.1
7.(2023全国乙理,1,5分,易)设z=,则=   (  )
A.1-2i  B.1+2i  C.2-i  D.2+i
8.(2022全国甲理,1,5分,易)若z=-1+i,则=  (  )
A.-1+i  B.-1-i
C.-+i  D.--i
三年模拟
练速度
1.(2024浙江金丽衢十二校第二次联考,2)若复数z满足z+2=3-2i,则|z|为 (  )
A.2  B.  C.  D.5
2.(2024河北唐山一模,1)已知i为虚数单位,复数z=,则z·= (  )
A.1+i  B.1-i  C.  D.2
3.(2024湖南衡阳名校联合体联考一,2)已知复数z=(a+bi)i(a,b∈R,i为虚数单位)的共轭复数为,则为纯虚数的充分必要条件为 (  )
A.a2+b2≠0  B.ab=0
C.a=0,b≠0  D.a≠0,b=0
4.(2024湖南师大附中模拟(二),2)已知z是虚数,z2+2z是实数,则z的 (  )
A.实部为1  B.实部为-1
C.虚部为1  D.虚部为-1
5.(2024湖南岳阳质检(三),2)若虚数单位i是关于x的方程ax3+bx2+2x+1=0(a,b∈R)的一个根,则|a+bi|= (  )
A.  B.2  C.  D.5
6.(2024黑龙江齐齐哈尔一模,2)已知a∈R,若z=为纯虚数,则a= (  )
A.  B.2  C.1  D.
7.(2024河北部分学校联考,2)已知复数z1=,z2=2i,则|z1-z2|= (  )
A.10  B.  C.  D.1
8.(2024辽宁辽阳一模,2)复数z=(2-i)(|4-3i|+i)的共轭复数为 (  )
A.11+3i  B.51+23i  C.9+3i  D.49+23i
9.(2024浙江Z20名校联盟第二次联考,2)已知1+2i是关于x的实系数一元二次方程x2-2x+m=0的一个根,则m= (  )
A.2  B.3  C.4  D.5
10.(2024山东潍坊一模,12)已知i是虚数单位,若复数z满足(2+i)z=i,则=    .
练思维
1.(2024江西重点中学协作体联考,2)在复平面内,复数z对应的点在第三象限,则复数z·(1+i)2 024对应的点在 (  )
A.第一象限  B.第二象限  
C.第三象限  D.第四象限
2.(2024湖南九校联盟第二次联考,3)关于复数z与其共轭复数,下列结论正确的是 (  )
A.在复平面内,表示复数z和的点关于虚轴对称
B.z·>0
C.z+必为实数,z-必为纯虚数
D.若复数z为实系数一元二次方程ax2+bx+c=0的一根,则也必是该方程的根
3.(多选)(2024江苏徐州新高考适应性测试,9)已知复数z在复平面内对应的点为,则 (  )
A.|z|=1  B.z+=1  
C.z2+z+1=0  D.z2 024=
4.(多选)(2024湖南长沙长郡中学一模,9)已知i为虚数单位,复数z=,下列说法正确的是 (  )
A.||=
B.复数z在复平面内对应的点位于第四象限
C.i-<0
D.z+为纯虚数
5.(多选)(2024河北衡水部分学校二模,9)已知z∈C,是z的共轭复数,则 (  )
A.若z=,则=
B.若z为纯虚数,则z2<0
C.若z-(2+i)>0,则z>2+i
D.若M={z||z+3i|≤3},则集合M所构成区域的面积为6π
6.(多选)(2024山东青岛第一次适应性检测,10)已知复数z,下列说法正确的是 (  )
A.若z-=0,则z为实数
B.若z2+=0,则z==0
C.若|z-i|=1,则|z|的最大值为2
D.若|z-i|=|z|+1,则z为纯虚数
7.(多选)(2024山东泰安一轮检测,9)已知复数z,w,则下列说法正确的是 (  )
A.若z=,则=w
B.若z=3+i,w=-2i,则z+w在复平面内对应的点在第二象限
C.若z2=1,则z=
D.若|z-2|=1,复数z在复平面内对应的点为Z,则直线OZ(O为原点)斜率的取值范围为
8.(多选)(2024山东泰安三模,10)已知z满足|z+i2-i3|=|z|,且z在复平面内对应的点为(x,y),则 (  )
A.x-y-1=0  B.x+y+1=0
C.|z|的最小值为  D.|z|的最小值为
9.(多选)(2024湘豫名校联考模拟(三),11)一般地,对于复数z=a+bi(i为虚数单位,a,b∈R),在平面直角坐标系中,设|z|=||=r(r≥0),经过点Z的终边的对应角为θ,则根据三角函数的定义可知a=rcos θ,b=rsin θ,因此z=r(cos θ+isin θ),我们称此种形式为复数的三角形式,r称为复数z的模,θ称为复数z的辐角.为使所研究的问题有唯一的结果,我们规定,适合0≤θ<2π的辐角θ的值叫做辐角的主值.已知复数z满足|z-1|≤r,r∈(0,1),Re(z)为z的实部,θ为z的辐角的主值,则 (  )
A.|z-i|的最大值为r+45
B.|z-i|的最小值为45-r
C.cos θ≤
D.Re≥(1-r2)
练风向
1.(创新知识交汇)(2024广东湛江二模,4)若复数z=(2x+yi)(2x-4yi)(x,y∈R)的实部为4,则点(x,y)的轨迹是 (  )
A.直径为2的圆
B.实轴长为2的双曲线
C.直径为1的圆
D.虚轴长为2的双曲线
2.(概念深度理解)(多选)(2024浙江杭州二模,9)已知关于x的方程x2+tx+1=0(-2A.z1=  B.z1·z2=1
C.|z1|=|z2|  D.=
3.(多想少算)(多选)(2024安徽合肥一六八中学适应性测试(三),9)若|z-1|=|z+1|,则 (  )
A.z∈R  B.|-1|=|+1|  
C.z+=0  D.z·=z2
5.2 复数
五年高考
高考新风向
1.(2024新课标Ⅰ,2,5分,易)若=1+i,则z= ( C )
A.-1-i  B.-1+i  C.1-i  D.1+i
2.(2024新课标Ⅱ,1,5分,易)已知z=-1-i,则|z|=   ( C )
A.0  B.1  C.  D.2
3.(2024全国甲理,1,5分,易)若z=5+i,则i(+z)= ( A )
A.10i  B.2i  C.10  D.2
考点1 复数的概念
1.(2023新课标Ⅱ,1,5分,易)在复平面内,(1+3i)·(3-i)对应的点位于 ( A )
A.第一象限  B.第二象限
C.第三象限  D.第四象限
2.(2021新高考Ⅱ,1,5分,易)在复平面内,复数对应的点位于 ( A )
A.第一象限  B.第二象限
C.第三象限  D.第四象限
3.(2020课标Ⅲ理,2,5分,易)复数的虚部是 ( D )
A.-  B.-  C.  D.
4.(2023全国乙文,1,5分,易)|2+i2+2i3|= ( C )
A.1  B.2  C.  D.5
5.(2023全国甲理,2,5分,易)设a∈R,(a+i)(1-ai)=2,则a= ( C )
A.-2  B.-1  C.1  D.2
6.(2022全国乙理,2,5分,易)已知z=1-2i,且z+a+b=0,其中a,b为实数,则 ( A )
A.a=1,b=-2  B.a=-1,b=2
C.a=1,b=2  D.a=-1,b=-2
7.(2020课标Ⅱ理,15,5分,中)设复数z1,z2满足|z1|=|z2|=2,z1+z2=+i,则|z1-z2|=  2  .
考点2 复数的运算
1.(2020新高考Ⅱ,2,5分,易)(1+2i)(2+i)= ( B )
A.-5i  B.5i  C.-5  D.5
2.(2022新高考Ⅱ,2,5分,易)(2+2i)(1-2i)= ( D )
A.-2+4i  B.-2-4i  C.6+2i  D.6-2i
3.(2022新高考Ⅰ,2,5分,易)若i(1-z)=1,则z+= ( D )
A.-2  B.-1  C.1  D.2
4.(2021新高考Ⅰ,2,5分,易)已知z=2-i,则z(+i)= ( C )
A.6-2i  B.4-2i  C.6+2i  D.4+2i
5.(2020新高考Ⅰ,2,5分,易)= ( D )
A.1  B.-1  C.i  D.-i
6.(2023新课标Ⅰ,2,5分,易)已知z=,则z-= ( A )
A.-i  B.i  C.0  D.1
7.(2023全国乙理,1,5分,易)设z=,则=   ( B )
A.1-2i  B.1+2i  C.2-i  D.2+i
8.(2022全国甲理,1,5分,易)若z=-1+i,则=  ( C )
A.-1+i  B.-1-i
C.-+i  D.--i
三年模拟
练速度
1.(2024浙江金丽衢十二校第二次联考,2)若复数z满足z+2=3-2i,则|z|为 ( C )
A.2  B.  C.  D.5
2.(2024河北唐山一模,1)已知i为虚数单位,复数z=,则z·= ( D )
A.1+i  B.1-i  C.  D.2
3.(2024湖南衡阳名校联合体联考一,2)已知复数z=(a+bi)i(a,b∈R,i为虚数单位)的共轭复数为,则为纯虚数的充分必要条件为 ( D )
A.a2+b2≠0  B.ab=0
C.a=0,b≠0  D.a≠0,b=0
4.(2024湖南师大附中模拟(二),2)已知z是虚数,z2+2z是实数,则z的 ( B )
A.实部为1  B.实部为-1
C.虚部为1  D.虚部为-1
5.(2024湖南岳阳质检(三),2)若虚数单位i是关于x的方程ax3+bx2+2x+1=0(a,b∈R)的一个根,则|a+bi|= ( C )
A.  B.2  C.  D.5
6.(2024黑龙江齐齐哈尔一模,2)已知a∈R,若z=为纯虚数,则a= ( B )
A.  B.2  C.1  D.
7.(2024河北部分学校联考,2)已知复数z1=,z2=2i,则|z1-z2|= ( B )
A.10  B.  C.  D.1
8.(2024辽宁辽阳一模,2)复数z=(2-i)(|4-3i|+i)的共轭复数为 ( A )
A.11+3i  B.51+23i  C.9+3i  D.49+23i
9.(2024浙江Z20名校联盟第二次联考,2)已知1+2i是关于x的实系数一元二次方程x2-2x+m=0的一个根,则m= ( D )
A.2  B.3  C.4  D.5
10.(2024山东潍坊一模,12)已知i是虚数单位,若复数z满足(2+i)z=i,则=    .
练思维
1.(2024江西重点中学协作体联考,2)在复平面内,复数z对应的点在第三象限,则复数z·(1+i)2 024对应的点在 ( C )
A.第一象限  B.第二象限  
C.第三象限  D.第四象限
2.(2024湖南九校联盟第二次联考,3)关于复数z与其共轭复数,下列结论正确的是 ( D )
A.在复平面内,表示复数z和的点关于虚轴对称
B.z·>0
C.z+必为实数,z-必为纯虚数
D.若复数z为实系数一元二次方程ax2+bx+c=0的一根,则也必是该方程的根
3.(多选)(2024江苏徐州新高考适应性测试,9)已知复数z在复平面内对应的点为,则 ( ACD )
A.|z|=1  B.z+=1  
C.z2+z+1=0  D.z2 024=
4.(多选)(2024湖南长沙长郡中学一模,9)已知i为虚数单位,复数z=,下列说法正确的是 ( ABC )
A.||=
B.复数z在复平面内对应的点位于第四象限
C.i-<0
D.z+为纯虚数
5.(多选)(2024河北衡水部分学校二模,9)已知z∈C,是z的共轭复数,则 ( AB )
A.若z=,则=
B.若z为纯虚数,则z2<0
C.若z-(2+i)>0,则z>2+i
D.若M={z||z+3i|≤3},则集合M所构成区域的面积为6π
6.(多选)(2024山东青岛第一次适应性检测,10)已知复数z,下列说法正确的是 ( AC )
A.若z-=0,则z为实数
B.若z2+=0,则z==0
C.若|z-i|=1,则|z|的最大值为2
D.若|z-i|=|z|+1,则z为纯虚数
7.(多选)(2024山东泰安一轮检测,9)已知复数z,w,则下列说法正确的是 ( ACD )
A.若z=,则=w
B.若z=3+i,w=-2i,则z+w在复平面内对应的点在第二象限
C.若z2=1,则z=
D.若|z-2|=1,复数z在复平面内对应的点为Z,则直线OZ(O为原点)斜率的取值范围为
8.(多选)(2024山东泰安三模,10)已知z满足|z+i2-i3|=|z|,且z在复平面内对应的点为(x,y),则 ( AC )
A.x-y-1=0  B.x+y+1=0
C.|z|的最小值为  D.|z|的最小值为
9.(多选)(2024湘豫名校联考模拟(三),11)一般地,对于复数z=a+bi(i为虚数单位,a,b∈R),在平面直角坐标系中,设|z|=||=r(r≥0),经过点Z的终边的对应角为θ,则根据三角函数的定义可知a=rcos θ,b=rsin θ,因此z=r(cos θ+isin θ),我们称此种形式为复数的三角形式,r称为复数z的模,θ称为复数z的辐角.为使所研究的问题有唯一的结果,我们规定,适合0≤θ<2π的辐角θ的值叫做辐角的主值.已知复数z满足|z-1|≤r,r∈(0,1),Re(z)为z的实部,θ为z的辐角的主值,则 ( ABD )
A.|z-i|的最大值为r+45
B.|z-i|的最小值为45-r
C.cos θ≤
D.Re≥(1-r2)
练风向
1.(创新知识交汇)(2024广东湛江二模,4)若复数z=(2x+yi)(2x-4yi)(x,y∈R)的实部为4,则点(x,y)的轨迹是 ( A )
A.直径为2的圆
B.实轴长为2的双曲线
C.直径为1的圆
D.虚轴长为2的双曲线
2.(概念深度理解)(多选)(2024浙江杭州二模,9)已知关于x的方程x2+tx+1=0(-2A.z1=  B.z1·z2=1
C.|z1|=|z2|  D.=
3.(多想少算)(多选)(2024安徽合肥一六八中学适应性测试(三),9)若|z-1|=|z+1|,则 ( BC )
A.z∈R  B.|-1|=|+1|  
C.z+=0  D.z·=z2
精品试卷·第 2 页 (共 2 页)
()

延伸阅读:

标签:

上一篇:2025版新教材高考数学第二轮复习专题练--4.1 三角函数的概念、诱导公式、三角恒等变换(含答案)

下一篇:2025版新教材高考数学第二轮复习专题练--6.4 数列求和(含答案)