专题35 几何综合压轴题(40题)
一、解答题
1.(2024·黑龙江大兴安岭地·中考真题)已知是等腰三角形,,,在的内部,点M、N在上,点M在点N的左侧,探究线段之间的数量关系.
(1)如图①,当时,探究如下:
由,可知,将绕点A顺时针旋转,得到,则且,连接,易证,可得,在中,,则有.
(2)当时,如图②:当时,如图③,分别写出线段之间的数量关系,并选择图②或图③进行证明.
2.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角的正弦值与折射角的正弦值的比值叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为,折射角为,且,,求该介质的折射率;
(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知,,求截面的面积.
3.(2024·内蒙古呼伦贝尔·中考真题)如图,在平行四边形中,点在边上,,连接,点为的中点,的延长线交边于点,连接
(1)求证:四边形是菱形:
(2)若平行四边形的周长为,求的长.
4.(2024·四川甘孜·中考真题)如图,为⊙O的弦,C为的中点,过点C作,交的延长线于点D.连接.
(1)求证:是⊙O的切线;
(2)若,求的面积.
5.(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
6.(2024·黑龙江绥化·中考真题)如图1,是正方形对角线上一点,以为圆心,长为半径的与相切于点,与相交于点.
(1)求证:与相切.
(2)若正方形的边长为,求的半径.
(3)如图2,在(2)的条件下,若点是半径上的一个动点,过点作交于点.当时,求的长.
7.(2024·内蒙古赤峰·中考真题)数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在中,,点D是上的一个动点,过点D作于点E,延长交延长线于点F.
请你解决下面各组提出的问题:
(1)求证:;
(2)探究与的关系;
某小组探究发现,当时,;当时,.
请你继续探究:
①当时,直接写出的值;
②当时,猜想的值(用含m,n的式子表示),并证明;
(3)拓展应用:在图1中,过点F作,垂足为点P,连接,得到图2,当点D运动到使时,若,直接写出的值(用含m,n的式子表示).
8.(2024·广东·中考真题)【问题背景】
如图1,在平面直角坐标系中,点B,D是直线上第一象限内的两个动点,以线段为对角线作矩形,轴.反比例函数的图象经过点A.
【构建联系】
(1)求证:函数的图象必经过点C.
(2)如图2,把矩形沿折叠,点C的对应点为E.当点E落在y轴上,且点B的坐标为时,求k的值.
【深入探究】
(3)如图3,把矩形沿折叠,点C的对应点为E.当点E,A重合时,连接交于点P.以点O为圆心,长为半径作.若,当与的边有交点时,求k的取值范围.
9.(2024·四川遂宁·中考真题)如图,是的直径,是一条弦,点是的中点,于点,交于点,连结交于点.
(1)求证:;
(2)延长至点,使,连接.
①求证:是的切线;
②若,,求的半径.
10.(2024·四川德阳·中考真题)已知的半径为5,是上两定点,点是上一动点,且的平分线交于点.
(1)证明:点为上一定点;
(2)过点作的平行线交的延长线于点.
①判断与的位置关系,并说明理由;
②若为锐角三角形,求的取值范围.
11.(2024·四川泸州·中考真题)如图,是的内接三角形,是的直径,过点B作的切线与的延长线交于点D,点E在上,,交于点F.
(1)求证:;
(2)过点C作于点G,若,,求的长.
12.(2024·四川南充·中考真题)如图,正方形边长为,点E为对角线上一点,,点P在边上以的速度由点A向点B运动,同时点Q在边上以的速度由点C向点B运动,设运动时间为t秒().
(1)求证:.
(2)当是直角三角形时,求t的值.
(3)连接,当时,求的面积.
13.(2024·安徽·中考真题)如图1,的对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.
(1)求证:;
(2)连接交于点H,连接,.
(ⅰ)如图2,若,求证:;
(ⅱ)如图3,若为菱形,且,,求的值.
14.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.
如图,已知,, 是的外接圆,点在上(),连接、、.
【特殊化感知】
(1)如图1,若,点在延长线上,则与的数量关系为________;
【一般化探究】
(2)如图2,若,点、在同侧,判断与的数量关系并说明理由;
【拓展性延伸】
(3)若,直接写出、、满足的数量关系.(用含的式子表示)
15.(2024·山东·中考真题)一副三角板分别记作和,其中,,,.作于点,于点,如图1.
(1)求证:;
(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点与点重合记为,点与点重合,将图2中的绕按顺时针方向旋转后,延长交直线于点.
①当时,如图3,求证:四边形为正方形;
②当时,写出线段,,的数量关系,并证明;当时,直接写出线段,,的数量关系.
16.(2024·江西·中考真题)综合与实践
如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.
特例感知
(1)如图1,当时,与之间的位置关系是______,数量关系是______;
类比迁移
(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.
拓展应用
(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.
①求y与x的函数表达式,并求出y的最小值;
②当时,请直接写出的长度.
17.(2024·湖南·中考真题)【问题背景】
已知点A是半径为r的上的定点,连接,将线段绕点O按逆时针方向旋转得到,连接,过点A作的切线l,在直线l上取点C,使得为锐角.
【初步感知】
(1)如图1,当时, ;
【问题探究】
(2)以线段为对角线作矩形,使得边过点E,连接,对角线,相交于点F.
①如图2,当时,求证:无论在给定的范围内如何变化,总成立:
②如图3,当,时,请补全图形,并求及的值.
18.(2024·河南·中考真题)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.
(1)操作判断
用分别含有和角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).
(2)性质探究
根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.
如图2,四边形是邻等对补四边形,,是它的一条对角线.
①写出图中相等的角,并说明理由;
②若,,,求的长(用含m,n,的式子表示).
(3)拓展应用
如图3,在中,,,,分别在边,上取点M,N,使四边形是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出的长.
19.(2024·黑龙江齐齐哈尔·中考真题)综合与实践:如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在中,,将线段绕点顺时针旋转得到线段,作交的延长线于点.
(1)【观察感知】如图2,通过观察,线段与的数量关系是______;
(2)【问题解决】如图3,连接并延长交的延长线于点,若,,求的面积;
(3)【类比迁移】在(2)的条件下,连接交于点,则______;
(4)【拓展延伸】在(2)的条件下,在直线上找点,使,请直接写出线段的长度.
20.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.
(1)求抛物线的解析式;
(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;
(3)当时,求点P的坐标;
(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.
21.(2024·四川广元·中考真题)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
22.(2024·内蒙古包头·中考真题)如图,在中,为锐角,点在边上,连接,且.
(1)如图1,若是边的中点,连接,对角线分别与相交于点.
①求证:是的中点;
②求;
(2)如图2,的延长线与的延长线相交于点,连接的延长线与相交于点.试探究线段与线段之间的数量关系,并证明你的结论.
23.(2024·吉林·中考真题)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.
(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).
(2)当点E与点C重合时,求t的值.
(3)求S关于t的函数解析式,并写出自变量t的取值范围.
24.(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.
(1)当点是边的中点时,求的长;
(2)当时,点到直线的距离为________;
(3)连结,当时,求正方形的边长;
(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)
25.(2024·湖北·中考真题)如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.
(1)求证:.
(2)若为中点,且,求长.
(3)连接,若为中点,为中点,探究与大小关系并说明理由.
26.(2024·内蒙古通辽·中考真题)数学活动课上,某小组将一个含的三角尺利一个正方形纸板如图1摆放,若,.将三角尺绕点逆时针方向旋转角,观察图形的变化,完成探究活动.
【初步探究】
如图2,连接,并延长,延长线相交于点交于点.
问题1 和的数量关系是________,位置关系是_________.
【深入探究】
应用问题1的结论解决下面的问题.
问题2 如图3,连接,点是的中点,连接,.求证.
【尝试应用】
问题3 如图4,请直接写出当旋转角从变化到时,点经过路线的长度.
27.(2024·甘肃·中考真题)【模型建立】
(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.
【模型应用】
(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.
【模型迁移】
(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.
28.(2024·湖南长沙·中考真题)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),
可分为四种类型,我们不妨约定:
既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;
只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;
只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;
既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.
请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,
①平行四边形一定不是“平凡型无圆”四边形; ( )
②内角不等于的菱形一定是“内切型单圆”四边形; ( )
③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.( )
(2)如图1,已知四边形内接于,四条边长满足:.
①该四边形是“______”四边形(从约定的四种类型中选一种填入);
②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.
(3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.
①如图2.连接交于点P.求证:.
②如图3,连接,若,,,求内切圆的半径r及的长.
29.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.
(1)求点A的坐标;
(2)求S与t的函数关系式;
(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.
30.(2024·重庆·中考真题)在中,,,过点作.
(1)如图1,若点在点的左侧,连接,过点作交于点.若点是的中点,求证:;
(2)如图2,若点在点的右侧,连接,点是的中点,连接并延长交于点,连接.过点作交于点,平分交于点,求证:;
(3)若点在点的右侧,连接,点是的中点,且.点是直线上一动点,连接,将绕点逆时针旋转得到,连接,点是直线上一动点,连接,.在点的运动过程中,当取得最小值时,在平面内将沿直线翻折得到,连接.在点的运动过程中,直接写出的最大值.
31.(2024·重庆·中考真题)在中,,点是边上一点(点不与端点重合).点关于直线的对称点为点,连接.在直线上取一点,使,直线与直线交于点.
(1)如图1,若,求的度数(用含的代数式表示);
(2)如图1,若,用等式表示线段与之间的数量关系,并证明;
(3)如图2,若,点从点移动到点的过程中,连接,当为等腰三角形时,请直接写出此时的值.
32.(2024·江苏连云港·中考真题)【问题情境】
(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;
【操作实践】
(2)如图3,图①是一个对角线互相垂直的四边形,四边a、b、c、d之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P为端点的四条线段之间的数量关系;
【探究应用】
(3)如图5,在图3中“④”的基础上,小昕将绕点逆时针旋转,他发现旋转过程中存在最大值.若,,当最大时,求AD的长;
(4)如图6,在中,,点D、E分别在边AC和BC上,连接DE、AE、BD.若,,求的最小值.
33.(2024·上海·中考真题)在梯形中,,点E在边上,且.
(1)如图1所示,点F在边上,且,联结,求证:;
(2)已知;
①如图2所示,联结,如果外接圆的心恰好落在的平分线上,求的外接圆的半径长;
②如图3所示,如果点M在边上,联结、、,与交于N,如果,且,,求边的长.
34.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
35.(2024·河北·中考真题)已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
(1)当点B与点N重合时,求劣弧的长;
(2)当时,如图2,求点B到的距离,并求此时x的值;
(3)设点O到的距离为d.
①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
②直接写出d的最小值.
36.(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:
【问题情境】
如图1,在中,,,点D、E在边上,且,,,求的长.
解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,
,,,
∴___①___.
∴.
又∵,
∴在中,___②___.
∵,,
∴___③___.
【问题解决】
上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.
刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.
【知识迁移】
如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.
【拓展应用】
如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).
【问题再探】
如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.
37.(2024·北京·中考真题)在平面直角坐标系中,的半径为1,对于的弦和不在直线上的点,给出如下定义:若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”.
(1)如图,点,.
①在点,,中,点___________是弦的“可及点”,其中____________;
②若点是弦的“可及点”,则点的横坐标的最大值为__________;
(2)已知是直线上一点,且存在的弦,使得点是弦的“可及点”.记点的横坐标为,直接写出的取值范围.
38.(2024·广东·中考真题)【知识技能】
(1)如图1,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到.当点E的对应点与点A重合时,求证:.
【数学理解】
(2)如图2,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到,连接,,作的中线.求证:.
【拓展探索】
(3)如图3,在中,,点D在上,.过点D作,垂足为E,,.在四边形内是否存在点G,使得?若存在,请给出证明;若不存在,请说明理由.
39.(2024·广东广州·中考真题)如图,在菱形中,.点在射线上运动(不与点,点重合),关于的轴对称图形为.
(1)当时,试判断线段和线段的数量和位置关系,并说明理由;
(2)若,为的外接圆,设的半径为.
①求的取值范围;
②连接,直线能否与相切?如果能,求的长度;如果不能,请说明理由.
40.(2024·云南·中考真题)如图,是的直径,点、是上异于、的点.点在外,,延长与的延长线交于点,点在的延长线上,,.点在直径上,,点是线段的中点.
(1)求的度数;
(2)求证:直线与相切:
(3)看一看,想一想,证一证:
以下与线段、线段、线段有关的三个结论:,,,你认为哪个正确?请说明理由.
精品试卷·第 2 页 (共 2 页)
()
专题35 几何综合压轴题(40题)
一、解答题
1.(2024·黑龙江大兴安岭地·中考真题)已知是等腰三角形,,,在的内部,点M、N在上,点M在点N的左侧,探究线段之间的数量关系.
(1)如图①,当时,探究如下:
由,可知,将绕点A顺时针旋转,得到,则且,连接,易证,可得,在中,,则有.
(2)当时,如图②:当时,如图③,分别写出线段之间的数量关系,并选择图②或图③进行证明.
【答案】图②的结论是:;图③的结论是:;证明见解析
【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B为顶点在外作,在上截取,连接,过点Q作,垂足为H,构造全等三角形,得出,,再证明,得到;在中由勾股定理得,即,整理可得结论;选③方法同②
【详解】解:图②的结论是:
证明:∵
∴是等边三角形,
∴,
以点B为顶点在外作,在上截取,连接,过点Q作,垂足为H,
,,
,
又
即
又,
,
;
∵
∴,
∴
,
∴,
在中,可得:
即
整理得
图③的结论是:
证明:以点B为顶点在外作,在上截取,连接,过点Q作,垂足为H,
,,
,
又
即
又,
,
在中,,
,
,
在中,可得:
即
整理得
2.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角的正弦值与折射角的正弦值的比值叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为,折射角为,且,,求该介质的折射率;
(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知,,求截面的面积.
【答案】(1);
(2).
【分析】本题主要考查了解直角三角形的应用,勾股定理等知识,
(1)根据,设,则,利用勾股定理求出,进而可得,问题即可得解;
(2)根据折射率与(1)的材料相同,可得折射率为,根据,可得,则有,在中,设,,问题随之得解.
【详解】(1)∵,
∴如图,
设,则,由勾股定理得,,
∴,
又∵,
∴,
∴折射率为:.
(2)根据折射率与(1)的材料相同,可得折射率为,
∵,
∴,
∴.
∵四边形是矩形,点O是中点,
∴,,
又∵,
∴,
在中,设,,
由勾股定理得,,
∴.
又∵,
∴,
∴,
∴,
∴截面的面积为:.
3.(2024·内蒙古呼伦贝尔·中考真题)如图,在平行四边形中,点在边上,,连接,点为的中点,的延长线交边于点,连接
(1)求证:四边形是菱形:
(2)若平行四边形的周长为,求的长.
【答案】(1)见解析
(2)
【分析】本题主要考查平行四边形的判定与性质,菱形的判定与性质,等边三角形的判定与性质等知识 :
(1)由平行四边形的性质得再证明,得出,证明出四边形是平行四边形,由得出四边形是菱形:
(2)求出菱形的周长为20,得出,再证明是等边三角形,得出.
【详解】(1)证明:∵四边形是平行四边形,
∴即
∴
∵为的中点,
∴
∴,
∴
∵
∴四边形是平行四边形,
又
∴四边形是菱形;
(2)解:∵
∴
∵平行四边形的周长为22,
∴菱形的周长为:
∴
∵四边形是菱形,
∴
又
∴是等边三角形,
∵.
4.(2024·四川甘孜·中考真题)如图,为⊙O的弦,C为的中点,过点C作,交的延长线于点D.连接.
(1)求证:是⊙O的切线;
(2)若,求的面积.
【答案】(1)见解析
(2)
【分析】本题考查了圆的切线的判定、勾股定理、垂径定理的推论等知识点,熟记相关结论是解题关键.
(1)由垂径定理的推论可知,据此即可求证;
(2)利用勾股定理求出即可求解;
【详解】(1)证明:∵为⊙O的弦,C为的中点,
由垂径定理的推论可知:,
∵,
∴,
∵为⊙O的半径,
∴是⊙O的切线;
(2)解:∵,
∴,
∴,
∴.
5.(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
【答案】(1)见解析;(2);(3)
【分析】本题考查矩形的性质,正方形的性质,勾股定理,相似三角形的判定和性质,熟练掌握相关知识点,构造相似三角形,是解题的关键:
(1)根据矩形的性质,结合同角的余角,求出,即可得证;
(2)延长交于点,证明,得到,再证明,求出的长,进而求出的长;
(3)设正方形的边长为,延长交于点,证明,得到,进而得到,勾股定理求出,进而求出的长,即可得出结果.
【详解】解:(1)∵矩形,
∴,
∴,
∵,
∴,
∴,
∴;
(2)延长交于点,
∵矩形,
∴,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
∴;
(3)设正方形的边长为,则:,
延长交于点,
∵正方形,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
6.(2024·黑龙江绥化·中考真题)如图1,是正方形对角线上一点,以为圆心,长为半径的与相切于点,与相交于点.
(1)求证:与相切.
(2)若正方形的边长为,求的半径.
(3)如图2,在(2)的条件下,若点是半径上的一个动点,过点作交于点.当时,求的长.
【答案】(1)证明见解析
(2)
(3)
【分析】(1)方法一:连接,过点作于点,四边形是正方形,是正方形的对角线,得出,进而可得为的半径,又,即可得证;
方法二:连接,过点作于点,根据正方形的性质证明得出,同方法一即可得证;
方法三:过点作于点,连接.得出四边形为正方形,则,同方法一即可得证;
(2)根据与相切于点,得出,由(1)可知,设,在中,勾股定理得出,在中,勾股定理求得,进而根据建立方程,解方程,即可求解.
(3)方法一:连接,设,在中,由勾股定理得:,在中,由勾股定理得:,结合题意得出,即可得出;
方法二:连接,证明得出,进而可得,同理可得
方法三:连接,证明得出,设,则,进而可得,进而同方法一,即可求解.
【详解】(1)方法一:证明:连接,过点作于点,
与相切于点,
.
四边形是正方形,是正方形的对角线,
,
,
为的半径,
为的半径,
,
与相切.
方法二:
证明:连接,过点作于点,
与相切于点,,
,
四边形是正方形,
,
又,
,
,
为的半径,
为的半径,
,
与相切.
方法三:
证明:过点作于点,连接.
与相切,为半径,
,
,
,
,
又四边形为正方形,
,
四边形为矩形,
又为正方形的对角线,
,
,
矩形为正方形,
.
又为的半径,
为的半径,
又,
与相切.
(2)解:为正方形的对角线,
,
与相切于点,
,
由(1)可知,设,
在中,
,
,
,,
又正方形的边长为.
在中,
,
,
,
.
∴的半径为.
(3)方法一:
解:连接,设,
,
,
,
.
在中,由勾股定理得:,
在中,由勾股定理得:,
又,
.
.
方法二:
解:连接,
为的直径,
,
,
,
,
,
,
,
,
,,
,
,
,
.
方法三:
解:连接,
为的直径,
,
,
,
,
,
,
,
,
,
,
,
设,则,
,
.
又,
,
.
【点睛】本题考查了切线的性质与判定,正方形的性质,全等三角形的性质与判定,勾股定理,垂径定理,相似三角形的性质与判定,正确的添加辅助线是解题的关键.
7.(2024·内蒙古赤峰·中考真题)数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在中,,点D是上的一个动点,过点D作于点E,延长交延长线于点F.
请你解决下面各组提出的问题:
(1)求证:;
(2)探究与的关系;
某小组探究发现,当时,;当时,.
请你继续探究:
①当时,直接写出的值;
②当时,猜想的值(用含m,n的式子表示),并证明;
(3)拓展应用:在图1中,过点F作,垂足为点P,连接,得到图2,当点D运动到使时,若,直接写出的值(用含m,n的式子表示).
【答案】(1)见解析
(2)①②,证明见解析
(3)
【分析】(1)等边对等角,得到,等角的余角的相等,结合对顶角相等,得到,即可得出结论;
(2)①根据给定的信息,得到是的2倍,即可得出结果;
②猜想,作于点,证明,得到,三线合一得到,即可得出结论;
(3)过点作,角平分线的性质,得到,推出,等角的余角相等,得到,进而得到,得到,根据,即可得出结果.
【详解】(1)证明:∵,
∴,
∵,
∴,
∴,,且,
∴,
∴;
(2)解:①当时,;当时,,
∴总结规律得:是的2倍,
∴当时,;
②当时,猜想,
证明:作于点,
∵,
∴,
∴,
∵,
∴,
由(1)知,又,
∴,即,
∴;
(3),理由如下:
过点作,
∵,,
∴,
由(2)知,当时,,
∴,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
由(1)知,
∴.
【点睛】本题考查等腰三角形的判定和性质,角平分线的性质,相似三角形的判定和性质,解直角三角形等知识点,熟练掌握相关知识点,添加辅助线构造特殊图形和相似三角形,是解题的关键.
8.(2024·广东·中考真题)【问题背景】
如图1,在平面直角坐标系中,点B,D是直线上第一象限内的两个动点,以线段为对角线作矩形,轴.反比例函数的图象经过点A.
【构建联系】
(1)求证:函数的图象必经过点C.
(2)如图2,把矩形沿折叠,点C的对应点为E.当点E落在y轴上,且点B的坐标为时,求k的值.
【深入探究】
(3)如图3,把矩形沿折叠,点C的对应点为E.当点E,A重合时,连接交于点P.以点O为圆心,长为半径作.若,当与的边有交点时,求k的取值范围.
【答案】(1)证明见解析;(2);(3)
【分析】(1)设,则,用含的代数式表示出,再代入验证即可得解;
(2)先由点B的坐标和k表示出,再由折叠性质得出,如图,过点D作轴,过点B作轴,证出,由比值关系可求出,最后由即可得解;
(3)当过点B时,如图所示,过点D作轴交y轴于点H,求出k的值,当过点A时,根 据A,C关于直线对轴知,必过点C,如图所示,连,,过点D作轴交y轴于点H,求出k的值,进而即可求出k的取值范围.
【详解】(1)设,则,
∵轴,
∴D点的纵坐标为,
∴将代入中得:得,
∴,
∴,
∴,
∴将代入中得出,
∴函数的图象必经过点C;
(2)∵点在直线上,
∴,
∴,
∴A点的横坐标为1,C点的纵坐标为2,
∵函数的图象经过点A,C,
∴,,
∴,
∴,
∵把矩形沿折叠,点C的对应点为E,
∴,,
∴,
如图,过点D作轴,过点B作轴,
∵轴,
∴H,A,D三点共线,
∴,,
∴,
∵,
∴,
∴,
∵,
∴,,
∴,
由图知,,
∴,
∴;
(3)∵把矩形沿折叠,点C的对应点为E,当点E,A重合,
∴,
∵四边形为矩形,
∴四边形为正方形,,
∴,,,
∵轴,
∴直线为一,三象限的夹角平分线,
∴,
当过点B时,如图所示,过点D作轴交y轴于点H,
∵轴,
∴H,A,D三点共线,
∵以点O为圆心,长为半径作,,
∴,
∴,
∴,,,
∵轴,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
当过点A时,根 据A,C关于直线对轴知,必过点C,如图所示,连,,过点D作轴交y轴于点H,
∵,
∴为等边三角形,
∵,
∴,
∴,,
∴,,
∵轴,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴当与的边有交点时,k的取值范围为.
【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.
9.(2024·四川遂宁·中考真题)如图,是的直径,是一条弦,点是的中点,于点,交于点,连结交于点.
(1)求证:;
(2)延长至点,使,连接.
①求证:是的切线;
②若,,求的半径.
【答案】(1)证明见解析
(2)①证明见解析,②的半径为.
【分析】(1)如图,连接,证明,可得,证明,可得,进一步可得结论;
(2)①证明,可得是的垂直平分线,可得,,,而,可得,进一步可得结论;②证明,可得,求解,,结合,可得答案.
【详解】(1)证明:如图,连接,
∵点是的中点,
∴,
∴,
∵,为的直径,
∴,
∴,
∴,
∴.
(2)证明:①∵为的直径,
∴,
∴,
∵,
∴是的垂直平分线,
∴,
∴,,
而,
∴,
∴,
∴,
∵为的直径,
∴是的切线;
②∵,
∴,
∵,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴的半径为.
【点睛】本题考查的是圆周角定理的应用,弧与圆心角之间的关系,切线的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,做出合适的辅助线是解本题的关键.
10.(2024·四川德阳·中考真题)已知的半径为5,是上两定点,点是上一动点,且的平分线交于点.
(1)证明:点为上一定点;
(2)过点作的平行线交的延长线于点.
①判断与的位置关系,并说明理由;
②若为锐角三角形,求的取值范围.
【答案】(1)证明见解析
(2)①与相切,理由见解析;②的取值范围为.
【分析】(1)由的平分线交于点,,可得,结合是上两定点,可得结论;
(2)①如图,连接,证明,结合,可得,从而可得结论;
②分情况讨论:如图,当时,可得;如图,连接,当,可得,从而可得答案.
【详解】(1)证明:∵的平分线交于点,,
∴,
∴,
∵是上两定点,
∴点为的中点,是一定点;
(2)解:①如图,连接,
∵,
∴,
∵,
∴,
∵为半径,
∴是的切线;
②如图,当时,
∴为直径,,
∵,
∴,
∴,,
∵,
∴,
∵,
∴四边形为矩形,
∴;
如图,连接,当,
∵,,
∴,
∴,
∵,
∴为等边三角形,
∴,
同理可得:,
∵,
∴,
∴,
∴,
∴当为锐角三角形,的取值范围为.
【点睛】本题考查的是勾股定理的应用,圆周角定理的应用,切线的判定与性质,相似三角形的判定与性质,做出合适的辅助线,清晰的分类讨论是解本题的关键.
11.(2024·四川泸州·中考真题)如图,是的内接三角形,是的直径,过点B作的切线与的延长线交于点D,点E在上,,交于点F.
(1)求证:;
(2)过点C作于点G,若,,求的长.
【答案】(1)证明见解析
(2)
【分析】(1)由直径所对的圆周角是直角得到,则,由切线的性质推出,则,再由同弧所对的圆周角相等和等边对等角得到,,据此即可证明;
(2)由勾股定理得,利用等面积法求出,则,同理可得,则,进而得到;如图所示,过点C作于H,则,证明,求出,则;设,则,证明,推出,在中,由勾股定理得,解方程即可得到答案.
【详解】(1)证明:∵是的直径,
∴,
∴,
∴;
∵是的切线,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴;
(2)解:∵,
∴,
在中,由勾股定理得,
∵,
∴,
∴,
同理可得,
∴,
∴;
如图所示,过点C作于H,则,
由(1)可得,
∴,
∴,即,
∴,
∴;
设,则,
∵,
∴,
∴,即,
∴,
在中,由勾股定理得,
∴,
解得或(舍去),
∴.
【点睛】本题主要考查了切线的性质,相似三角形的性质与判定,勾股定理,同弧所对的圆周角相等,直径所对的圆周角是直角,等腰三角形的性质等等,正确作出辅助线构造直角三角形和相似三角形是解题的关键.
12.(2024·四川南充·中考真题)如图,正方形边长为,点E为对角线上一点,,点P在边上以的速度由点A向点B运动,同时点Q在边上以的速度由点C向点B运动,设运动时间为t秒().
(1)求证:.
(2)当是直角三角形时,求t的值.
(3)连接,当时,求的面积.
【答案】(1)见解析
(2)秒或2秒
(3)
【分析】(1)根据正方形性质,得到,再题意得到,从而得到;
(2)利用题目中的条件,分别用t表示、、,再分别讨论当、和时,利用勾股定理构造方程求出t即可;
(3)过点A作,交的延长线于点F,连接交于点G.由此得到,由已知得到进而得到,由题意,则,再依次证明、,得到,从而证明,即是等腰直角三角形.则,再用求出的面积.
【详解】(1)证明:四边形是正方形,
.
,
.
(2)解:过点E作于点M,过点E作于点N.
由题意知,
∵
∴,
∵
∴
由已知,
.
,即,
,即,
,即.
①当时,有.
即,整理得.
解得(不合题意,舍去).
②当时,有.
即,整理得,解得.
③当时,有.
即,整理得,该方程无实数解.
综上所述,当是直角三角形时,t的值为秒或2秒.
(3)解:过点A作,交的延长线于点F,连接交于点G.
,
.
又,
.
,
,
,
,
,
,
,
即,
是等腰直角三角形.
,
【点睛】本题考查了正方形的性格、相似三角形的性质与判定、正切定义以及勾股定理.解答过程中,灵活的利用勾股定理构造方程、根据题意找到相似三角形是解题关键.
13.(2024·安徽·中考真题)如图1,的对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.
(1)求证:;
(2)连接交于点H,连接,.
(ⅰ)如图2,若,求证:;
(ⅱ)如图3,若为菱形,且,,求的值.
【答案】(1)见详解
(2)(ⅰ)见详解,(ⅱ)
【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.
(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.
【详解】(1)证明:∵四边形是平行四边形,
∴,,
∴,
又∵,
∴四边形是平行四边形,
∴,
∴.
在与中,
∴.
∴.
(2)(ⅰ)∵
∴,
又.,
∴,
∵,
∴,
∴,
∴
(ⅱ)∵是菱形,
∴,
又,,
∴,
∴,
∵.,
∴,
∴,
即,
∴,
∴,
∵,,,
∴,
∴,
即,
∴
∴,
故.
【点睛】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.
14.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.
如图,已知,, 是的外接圆,点在上(),连接、、.
【特殊化感知】
(1)如图1,若,点在延长线上,则与的数量关系为________;
【一般化探究】
(2)如图2,若,点、在同侧,判断与的数量关系并说明理由;
【拓展性延伸】
(3)若,直接写出、、满足的数量关系.(用含的式子表示)
【答案】(1);(2)(3)当在上时,;当在上时,
【分析】(1)根据题意得出是等边三角形,则,进而由四边形是圆内接四边形,设交于点,则,设,则,分别求得,即可求解;
(2)在上截取,证明,根据全等三角形的性质即得出结论;
(3)分两种情况讨论,①当在上时,在上截取,证明,,得出,作于点,得出,进而即可得出结论;②当在上时,延长至,使得,连接,证明,,同①可得,即可求解.
【详解】解:∵,,
∴是等边三角形,则
∵是的外接圆,
∴是的角平分线,则
∴
∵四边形是圆内接四边形,
∴
∴
设交于点,则,
设,则
在中,
∴
∴,
∵是直径,则,
在中,
∴
∴
(2)如图所示,在上截取,
∵
∴
∴是等边三角形,
∴,则
∴
∵四边形是圆内接四边形,
∴
∴;
∵,,
∴是等边三角形,则
∴,
又∵
∴
在中
∴
∴,
∴
即;
(3)解:①如图所示,当在上时,
在上截取,
∵
∴
又∵
∴,则
∴即
又∵
∴
∴
∴
∵
∴
如图所示,作于点,
在中,,
∴
∴
∴,即
②当在上时,如图所示,延长至,使得,连接,
∵四边形是圆内接四边形,
∴
又∵
∴,则
∴即,
又∵
∴
∴
∴,
∵
同①可得
∴
∴
综上所述,当在上时,;当在上时,.
【点睛】本题考查了等边三角形的性质,圆内接四边形对角互补,圆周角定理,同弧所对的圆周角相等,全等三角形的性质与判定,相似三角形的性质与判定,解直角三角形,等腰三角形的性质,熟练掌握截长补短的辅助线方法是解题的关键.
15.(2024·山东·中考真题)一副三角板分别记作和,其中,,,.作于点,于点,如图1.
(1)求证:;
(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点与点重合记为,点与点重合,将图2中的绕按顺时针方向旋转后,延长交直线于点.
①当时,如图3,求证:四边形为正方形;
②当时,写出线段,,的数量关系,并证明;当时,直接写出线段,,的数量关系.
【答案】(1)证明见解析
(2)①证明见解析;②当时,线段,,的数量关系为;当时,线段,,的数量关系为;
【分析】(1)利用等腰直角三角形与含30度角的直角三角形的性质可得结论;
(2)①证明,,可得,证明,可得四边形为矩形,结合,即,
而,可得,从而可得结论;②如图,当时,连接,证明,可得,结合,可得;②如图,当时,连接,同理,结合,可得
【详解】(1)证明:设,
∵,,
∴,
∴,
∵,
∴,
∵,,
∴,
∴;
(2)证明:①∵,,
∴,,
∵,
∴,
∵,
∴,
∴四边形为矩形,
∵,即,
而,
∴,
∴四边形是正方形;
②如图,当时,连接,
由(1)可得:,,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
②如图,当时,连接,
由(1)可得:,,
∵,
∴,
∴,
∴,
∵,
∴,
∴;
【点睛】本题考查的是等腰直角三角形的性质,含30度角的直角三角形的性质,直角三角形斜边上的中线的性质,正方形的判定,旋转的性质,全等三角形的判定与性质,锐角三角函数的应用,作出合适的辅助线是解本题的关键.
16.(2024·江西·中考真题)综合与实践
如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.
特例感知
(1)如图1,当时,与之间的位置关系是______,数量关系是______;
类比迁移
(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.
拓展应用
(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.
①求y与x的函数表达式,并求出y的最小值;
②当时,请直接写出的长度.
【答案】(1),(2)与之间的位置关系是,数量关系是;(3)①y与x的函数表达式,当时,的最小值为;②当时,为或.
【分析】(1)先证明,,,可得;再结合全等三角形的性质可得结论;
(2)先证明,,结合,可得;再结合相似三角形的性质可得结论;
(3)①先证明四边形为正方形,如图,过作于,可得,,再分情况结合勾股定理可得函数解析式,结合函数性质可得最小值;②如图,连接,,,证明,可得在上,且为直径,则,过作于,过作于,求解正方形面积为,结合,再解方程可得答案.
【详解】解:(1)∵,
∴,,
∵,
∴,,
∴;
∴,,
∴,
∴,
∴与之间的位置关系是,数量关系是;
(2)与之间的位置关系是,数量关系是;理由如下:
∵,
∴,,
∵,
∴;
∴,,
∴,
∴,
∴与之间的位置关系是,数量关系是;
(3)由(1)得:,,,
∴,都为等腰直角三角形;
∵点F与点C关于对称,
∴为等腰直角三角形;,
∴四边形为正方形,
如图,过作于,
∵,,
∴,,
当时,
∴,
∴,
如图,当时,
此时,
同理可得:,
∴y与x的函数表达式为,
当时,的最小值为;
②如图,∵,正方形,记正方形的中心为,
∴,
连接,,,
∴,
∴在上,且为直径,
∴,
过作于,过作于,
∴,,
∴,
∴,
∴正方形面积为,
∴,
解得:,,经检验都符合题意,
如图,
综上:当时,为或.
【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,二次函数的性质,圆的确定及圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键.
17.(2024·湖南·中考真题)【问题背景】
已知点A是半径为r的上的定点,连接,将线段绕点O按逆时针方向旋转得到,连接,过点A作的切线l,在直线l上取点C,使得为锐角.
【初步感知】
(1)如图1,当时, ;
【问题探究】
(2)以线段为对角线作矩形,使得边过点E,连接,对角线,相交于点F.
①如图2,当时,求证:无论在给定的范围内如何变化,总成立:
②如图3,当,时,请补全图形,并求及的值.
【答案】(1);①证明见解析;②补全图形见解析,,
【分析】(1)可证是等边三角形,则,由直线l是的切线,得到,故;
(2)①根据矩形的性质与切线的性质证明,则,而,由,得到;
②过点O作于点G,于点H,在中,先证明点E在线段上,,由等腰三角形的性质得,根据互余关系可得,可求,解,求得,可证明,故在中,.
【详解】解:(1)由题意得,
∵,
∴是等边三角形,
∴,
∵直线l是的切线,
∴,
∴,
故答案为:;
(2)①如图:
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∵四边形是矩形,
∴,,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∵四边形是矩形,
∴,
∵,
∴;
②补全图形如图:
过点O作于点G,于点H,
在中,,
∴由勾股定理得,
∵,
∴,
∴,
∴点E在线段上,
∴在,,
∵,,
∴,
∵,
∴,
∴,
在中,,
∴设,
∴由勾股定理得,
∴,
∴在中,
∵四边形是矩形,
∴,
∴,
而,
∴,
∴在中,.
【点睛】本题考查了圆的切线的性质,等腰三角形的性质,全等三角形的判定与性质,矩形的性质,解直角三角形,勾股定理,熟练掌握知识点,正确添加辅助线是解决本题的关键.
18.(2024·河南·中考真题)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.
(1)操作判断
用分别含有和角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).
(2)性质探究
根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.
如图2,四边形是邻等对补四边形,,是它的一条对角线.
①写出图中相等的角,并说明理由;
②若,,,求的长(用含m,n,的式子表示).
(3)拓展应用
如图3,在中,,,,分别在边,上取点M,N,使四边形是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出的长.
【答案】(1)②④
(2)①.理由见解析;②
(3)或
【分析】(1)根据邻等对补四边形的定义判断即可;
(2)①延长至点E,使,连接,根据邻等对补四边形定义、补角的性质可得出,证明,得出,,根据等边对等角得出,即可得出结论;
②过A作于F,根据三线合一性质可求出,由①可得,在中,根据余弦的定义求解即可;
(3)分,,,四种情况讨论即可.
【详解】(1)解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,
故图②和图④中四边形是邻等对补四边形,
故答案为:②④;
(2)解:①,理由:
延长至点E,使,连接,
∵四边形是邻等对补四边形,
∴,
∵,
∴,
∵,
∴,
∴,,
∴,
∴;
②过A作于F,
∵,
∴,
∵,
∴,
在中,,
∴;
(3)解:∵,,,
∴,
∵四边形是邻等对补四边形,
∴,
∴,
当时,如图,连接,过N作于H,
∴,
在中,
在中,
∴,
解得,
∴,
∵,,
∴,
∴,即,
∴,,
∴,
∴;
当时,如图,连接,
∵,
∴,
∴,故不符合题意,舍去;
当时,连接,过N作于H,
∵,,
∴,
∴,即,
解得,
∵,,
∴,
∴,即,
∴,,
∴,
∴;
当时,如图,连接,
∵,
∴,
∴,故不符合题意,舍去;
综上,的长为或.
【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.
19.(2024·黑龙江齐齐哈尔·中考真题)综合与实践:如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在中,,将线段绕点顺时针旋转得到线段,作交的延长线于点.
(1)【观察感知】如图2,通过观察,线段与的数量关系是______;
(2)【问题解决】如图3,连接并延长交的延长线于点,若,,求的面积;
(3)【类比迁移】在(2)的条件下,连接交于点,则______;
(4)【拓展延伸】在(2)的条件下,在直线上找点,使,请直接写出线段的长度.
【答案】(1)
(2)10
(3)
(4)或
【分析】(1)根据旋转的性质可得,,进而证明,即可求解;
(2)根据(1)的方法证明,进而证明,求得,则,然后根据三角形的面积公式,即可求解.
(3)过点作于点,证明得出,证明,设,则,代入比例式,得出,进而即可求解;
(4)当在点的左侧时,过点作于点,当在点的右侧时,过点作交的延长线于点,分别解直角三角形,即可求解.
【详解】(1)解:∵将线段绕点顺时针旋转得到线段,作交的延长线于点.
,
,
,
,
,
又且
,
;
(2)解:,
,
,
,
,
又且,
,
,
,
,
,
,
,
,
,
;
(3)解:如图所示,过点作于点,
∵,
∴
∴,
即,即,
又∵
∴
∴,
设,则,
解得:
∴;
(4)解:如图所示,当在点的左侧时,过点作于点
∵
∴,设,则,
又∵,
∴,
∴
∴
∴
∴,
解得:
在中,
∴
∴
如图所示,当在点的右侧时,过点作交的延长线于点,
∵
∴
∵
∴
设,则,,
∵,
∴
解得:
∴
∴
综上所述,或.
【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,解直角三角形,旋转的性质,熟练掌握以上知识是解题的关键.
20.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.
(1)求抛物线的解析式;
(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;
(3)当时,求点P的坐标;
(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.
【答案】(1)
(2)
(3)
(4)
【分析】本题主要考查了求函数解析式、二次函数与几何的综合等知识点,掌握数形结合思想成为解题的关键.
(1)先根据题意确定点A、C的坐标,然后运用待定系数法求解即可;
(2)分三种情况分别画出图形,然后根据等腰三角形的定义以及坐标与图形即可解答;
(3)先证明可得,设,则,可得,即,求得可得m的值,进而求得点P的坐标;
(4)如图:将线段向右平移单位得到,即四边形是平行四边形,可得,即,作关于对称轴的点,则,由两点间的距离公式可得,再根据三角形的三边关系可得即可解答.
【详解】(1)解:∵直线与x轴交于点A,与y轴交于点C,
∴当时,,即;当时,,即;
∵,
∴设抛物线的解析式为,
把代入可得:,解得:,
∴,
∴抛物线的解析式为:.
(2)解:∵,,
∴,
∴,
如图:当,
∴,即;
如图:当,
∴,即;
如图:当,
∴,即;
综上,点D的坐标为.
(3)解:如图:∵轴,
∴,
∵轴,
∴,
∵,
∴,
∴,
∵设,则,
∴,
∴,解得:(负值舍去),
当时,,
∴.
(4)解: ∵抛物线的解析式为:,
∴抛物线的对称轴为:直线,
如图:将线段向右平移单位得到,
∴四边形是平行四边形,
∴,即,
作关于对称轴的点,则
∴,
∵,
∴的最小值为.
故答案为.
21.(2024·四川广元·中考真题)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
【答案】(1)证明见解析
(2)
(3)
【分析】(1)根据题意,由,,利用两个三角形相似的判定定理即可得到,再由相似性质即可得证;
(2)设,由(1)中相似,代值求解得到,从而根据与的相似比为求解即可得到答案;
(3)过点作的平行线交的延长线于点,如图1所示,设,过点作于点,如图2所示,利用含的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到,代值求解即可得到答案.
【详解】(1)证明:∵,,
∴,
∴,
∴;
(2)解:∵点为中点,
∴设,
由(1)知,
∴,
∴,
∴与的相似比为,
∴,
∵
∴;
(3)解:过点作的平行线交的延长线于点,过作,如图1所示:
∵点为中点,
∴设,
∵,
∴,,
在中,,则由勾股定理可得,
过点作于点,如图2所示:
∴,
∴,
∴,
∴,,
∴,
∴,
∵,点为中点,
∴,,,
又∵,
∴,,
∴,
又∵,
∴,,
∴,即,
∴,
∴.
【点睛】本题考查几何综合,涉及相似三角形的判定与性质、含的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.
22.(2024·内蒙古包头·中考真题)如图,在中,为锐角,点在边上,连接,且.
(1)如图1,若是边的中点,连接,对角线分别与相交于点.
①求证:是的中点;
②求;
(2)如图2,的延长线与的延长线相交于点,连接的延长线与相交于点.试探究线段与线段之间的数量关系,并证明你的结论.
【答案】(1)①见解析;②
(2),理由见解析
【分析】(1)①根据,得出为的中点,证明出即可;②先证明出得到,然后再根据平行四边形的性质找到线段的数量关系求解;
(2)连接交于点,证明,进一步证明出四边形为平行四边形,得出为的中位线,得到,再证明出得到,再通过等量代换即可求解.
【详解】(1)解:①,
为的中点,
,
是边的中点,
,
,
在中,
∴,
又∵,
,
,
是的中点;
②,
四边形为平行四边形,
,
,
,
∵,
,
,
,
,
;
(2)解:线段与线段之间的数量关系为:,理由如下:
连接交于点,如下图:
由题意,的延长线与的延长线相交于点,连接的延长线与相交于点,
,
又,
,
,
,
,
四边形为平行四边形,
,
,
,
为的中点,
,
,
为的中点,
为的中位线,
,
,
,
,
,
,
,
.
【点睛】本题考查了平行四边形的性质,三角形全等的判定及性质,三角线相似的判定及性质,三角形的中位线等知识,解题的关键是添加适当的辅助线构造全等三角形来求解.
23.(2024·吉林·中考真题)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.
(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).
(2)当点E与点C重合时,求t的值.
(3)求S关于t的函数解析式,并写出自变量t的取值范围.
【答案】(1)等腰三角形,
(2)
(3)
【分析】(1)过点Q作于点H,根据“平行线+角平分线”即可得到,由,得到,解得到;
(2)由为等边三角形得到,而,则,故,解得;
(3)当点P在上,点E在上,重合部分为,过点P作于点G,,则,此时;当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,此时,因此,故可得,此时;当点P在上,重合部分为, 此时,,解直角三角形得,故,此时,再综上即可求解.
【详解】(1)解:过点Q作于点H,由题意得:
∵,,
∴,
∵平分,
∴,
∵,
∴,
∴,
∴,
∴为等腰三角形,
∵,
∴,
∴在中,;
(2)解:如图,
∵为等边三角形,
∴,
由(1)得,
∴,
即,
∴;
(3)解:当点P在上,点E在上,重合部分为,过点P作于点G,
∵,
∴,
∵是等边三角形,
∴,
∴,
由(2)知当点E与点C重合时,,
∴;
当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,如图,
∵是等边三角形,
∴,
而,
∴,
∴,
∴,
当点P与点D重合时,在中,,
∴,
∴;
当点P在上,重合部分为,如图,
∵,
由上知,
∴,
∴此时,
∴,
∵是等边三角形,
∴,
∴,
∴,
∵,
∴,
∴当点P与点B重合时,,
解得:,
∴,
综上所述:.
【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.
24.(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.
(1)当点是边的中点时,求的长;
(2)当时,点到直线的距离为________;
(3)连结,当时,求正方形的边长;
(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)
【答案】(1)
(2)
(3)
(4)或
【分析】本题考查等腰三角形性质,勾股定理,锐角三角函数,熟练掌握面积法是解题的关键;(1)根据等腰三角形三线合一性质,利用勾股定理即可求解;(2)利用面积法三角形面积相等即可;(3)设,则,,过点作于
,根据,建立方程;即可求解;(4)第一种情况,,在异侧时,设,,则,证明,得到,即可求解;第二种情况,当,在同侧,设,则,,,求得,解方程即可求解;
【详解】(1)解:根据题意可知:,
为等腰三角形,故点是边的中点时,;
在中,;
(2)根据题意作,如图所示;
当时,则,
设点到直线的距离为,
,
解得:;
(3)如图,当时,点落在上,
设,则,,
过点作于
则,
,
,
解得:
故,
所以正方形的边长为;
(4)如图,,在异侧时;
设,,则
三边的比值为,
,
,
当,在同侧
设,则,,
三边比为,
三边比为,
设,则,,
解得:
综上所述:的长为或
25.(2024·湖北·中考真题)如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.
(1)求证:.
(2)若为中点,且,求长.
(3)连接,若为中点,为中点,探究与大小关系并说明理由.
【答案】(1)见详解
(2)
(3)
【分析】(1)根据矩形的性质得,由折叠得出,得出,即可证明;
(2)根据矩形的性质以及线段中点,得出,根据代入数值得,进行计算,再结合,则,代入数值,得,所以;
(3)由折叠性质,得直线,,是等腰三角形,则,因为为中点,为中点,所以,,所以,则,所以,则,即可作答.
【详解】(1)解:如图:
∵四边形是矩形,
∴,
∴,
∵分别在上,将四边形沿翻折,使的对称点落在上,
∴,
∴,
∴,
∴;
(2)解:如图:
∵四边形是矩形,
∴,,
∵为中点,
∴,
设,
∴,
在中,,
即,
解得,
∴,
∴,
∵,
∴,
∴,
解得,
∵,
∴;
(3)解:如图:延长交于一点M,连接
∵分别在上,将四边形沿翻折,使的对称点落在上,
∴直线
,
,
∴是等腰三角形,
∴,
∵为中点,
∴设,
∴,
∵为中点,
∴,
∵,,
∴,
∴,,
∴,
在中,,
∴,
∴,
在中,,
∵,
∴,
∴,
∴,
∴,
∴,
【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.
26.(2024·内蒙古通辽·中考真题)数学活动课上,某小组将一个含的三角尺利一个正方形纸板如图1摆放,若,.将三角尺绕点逆时针方向旋转角,观察图形的变化,完成探究活动.
【初步探究】
如图2,连接,并延长,延长线相交于点交于点.
问题1 和的数量关系是________,位置关系是_________.
【深入探究】
应用问题1的结论解决下面的问题.
问题2 如图3,连接,点是的中点,连接,.求证.
【尝试应用】
问题3 如图4,请直接写出当旋转角从变化到时,点经过路线的长度.
【答案】(1);;(2)证明见解析;(3)
【分析】(1)如图,由四边形是正方形,是等腰直角三角形,,证明,再进一步可得结论;
(2)如图,由,,再结合直角三角形斜边上的中线的性质可得结论;
(3)如图, 证明在以为圆心,为半径的上,过作于,当时,证明,可得,,证明四边形是正方形,可得当旋转角从变化到时,在上运动,再进一步解答即可;
【详解】解:;;理由如下:
如图,∵四边形是正方形,
∴,,
∵是等腰直角三角形,,
∴,,
∴,
∴,
∴,,
∵,
∴,
∴;
(2)如图,∵四边形是正方形,
∴,
∵点是的中点,
∴,
∵,
∴,
∵点是的中点,
∴,
∴;
(3)如图,∵,,
∴在以为圆心,为半径的上,
过作于,
当时,
∴,,
∵,
∴,,
∴,,
∴,
∴,
∴,
∴,
而,,
∴四边形是正方形,
∴当旋转角从变化到时,在上运动,
∵,,,
∴,
∴点经过路线的长度为.
【点睛】本题考查的是正方形的性质与判定,旋转的性质,勾股定理的应用,含30度角的直角三角形的性质,圆周角的应用,勾股定理的逆定理的应用,弧长的计算,作出合适的辅助线是解本题的关键.
27.(2024·甘肃·中考真题)【模型建立】
(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.
【模型应用】
(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.
【模型迁移】
(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.
【答案】(1),理由见详解,(2),理由见详解,(3),理由见详解
【分析】(1)直接证明,即可证明;
(2)过E点作于点M,过E点作于点N,先证明,可得,结合等腰直角三角形的性质可得:, ,即有,,进而可得,即可证;
(3)过A点作于点H,过F点作,交的延长线于点G,先证明,再结合等腰直角三角形的性质,即可证明.
【详解】(1),理由如下:
∵,,,
∴,
∴,
∴,
∵,
∴,
∴,,
∴,
∴;
(2),理由如下:
过E点作于点M,过E点作于点N,如图,
∵四边形是正方形,是正方形的对角线,
∴,平分,,
∴,
即,
∵,,
∴,
∵,
∴,
∴,
∵,,,,
∴四边形是正方形,
∴是正方形对角线,,
∴, ,
∴,,
∴,即,
∵,
∴,
即有;
(3),理由如下,
过A点作于点H,过F点作,交的延长线于点G,如图,
∵,,,
∴,
∴,
∴,
又∵,
∴,
∴,
∵在正方形中,,
∴,
∴,
∴是等腰直角三角形,
∴,
∴,
∵,,
∴是等腰直角三角形,
∴,
∴,
∴,
∵,
∴,
∴.
【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.
28.(2024·湖南长沙·中考真题)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),
可分为四种类型,我们不妨约定:
既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;
只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;
只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;
既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.
请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,
①平行四边形一定不是“平凡型无圆”四边形; ( )
②内角不等于的菱形一定是“内切型单圆”四边形; ( )
③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.( )
(2)如图1,已知四边形内接于,四条边长满足:.
①该四边形是“______”四边形(从约定的四种类型中选一种填入);
②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.
(3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.
①如图2.连接交于点P.求证:.
②如图3,连接,若,,,求内切圆的半径r及的长.
【答案】(1)①×;②√;③√
(2)①外接型单圆;②见解析
(3),,
【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;
(2)①根据已知结合题中定义可得结论;
②根据角平分线的定义和圆周角定理证明即可证得结论;
(3)①连接、、、、,根据四边形是“完美型双圆”四边形,结合四边形的内角和定理可推导出,,,进而可得,,然后利用圆周角定理可推导出,即可证得结论;
②连接、、、,根据已知条件证明,进而证明得到,再利用勾股定理求得,,同理可证求解即可.
【详解】(1)解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以
①当平行四边形的对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆,
∴该平行四边形是 “平凡型无圆”四边形,故①错误;
②∵内角不等于的菱形的对角不互补,
∴该菱形无外接圆,
∵菱形的四条边都相等,
∴该菱形的对边之和相等,
∴该菱形有内切圆,
∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;
③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,
则,,,,
∴为等腰直角三角形,
∴,即;
故③正确,
故答案为:①×;②√;③√;
(2)解:①∵四边形中,,
∴四边形无内切圆,又该四边形有外接圆,
∴该四边形是“外接型单圆”四边形,
故答案为:外接型单圆;
②∵的平分线交于点E,的平分线交于点F,
∴,,
∴,,
∴,
∴,即和均为半圆,
∴是的直径.
(3)①证明:如图,连接、、、、,
∵是四边形的内切圆,
∴,,,,
∴,
在四边形中,,
同理可证,,
∵四边形是“完美型双圆”四边形,
∴该四边形有外接圆,则,
∴,则,
∵,,
∴,
∴,
∴;
②如图,连接、、、,
∵四边形 是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H,
∴∴,,,,,
∴,,,
∴,
∵,
∴,又,
∴,
∴,
∵,,
∴,则,
在中,由得,
解得;
在中,,
∴,
同理可证,
∴,
∴,
∴.
【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.
29.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.
(1)求点A的坐标;
(2)求S与t的函数关系式;
(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.
【答案】(1)点A的坐标为
(2)
(3)存在,,,,
【分析】(1)运用因式分解法解方程求出的长,根据等边三角形的性质得出,过点A作轴,垂足为C,求出的长即可;
(2)分,和三种情况,运用三角形面积公式求解即可;
(3)当时求出,得,分为边和对角线两种情况可得点N的坐标;当和时不存在以点O、P、M、N为顶点的四边形是菱形
【详解】(1)解:,解得,
的长度是的根,
∵是等边三角形,
∴,
过点A作轴,垂足为C,
在中,
∴
,
∴
点A的坐标为
(2)解:当时.过P作轴,垂足为点D,
∴,,
∴
∴,
;
当时,过Q作,垂足为点E
∵
∴
又
∴,
又,
当时,过O作,垂足为F
∴,
同理可得,,
∴;
综上所述
(3)解:当时,解得,
∴,
过点P作轴于点G,则
∴
∴点P的坐标为;
当为边时,将沿轴向下平移4个单位得,此时,四边形是菱形;
将沿轴向上平移4个单位得,此时,四边形是菱形;如图,
作点P关于y轴的对称点,当时,四边形是菱形;
当为对角线时,设的中点为T,过点T作,交y轴于点M,延长到,使连接,过点作轴于点,则
∴
∴,即,
解得,,
∴,
∴;
当,解得,,不符合题意,此情况不存在;
当时,解得,,不符合题意,此情况不存在;
综上,点N的坐标为,,,
【点睛】本题主要考查运用因式分解法解一元二次方程,等边三角形的性质,勾股定理,角所对的直角边等于斜边的一半,三角形的面积,菱形的判定与性质,正确作出辅助线和分类讨论是解答本题的关键
30.(2024·重庆·中考真题)在中,,,过点作.
(1)如图1,若点在点的左侧,连接,过点作交于点.若点是的中点,求证:;
(2)如图2,若点在点的右侧,连接,点是的中点,连接并延长交于点,连接.过点作交于点,平分交于点,求证:;
(3)若点在点的右侧,连接,点是的中点,且.点是直线上一动点,连接,将绕点逆时针旋转得到,连接,点是直线上一动点,连接,.在点的运动过程中,当取得最小值时,在平面内将沿直线翻折得到,连接.在点的运动过程中,直接写出的最大值.
【答案】(1)证明见解析
(2)证明见解析
(3)
【分析】(1)证明得到,再由点是的中点,得到,即可证明;
(2)如图所示,过点G作于H,连接,先证明,得到,,再证明是等腰直角三角形,得到;由直角三角形斜边上的中线的性质可得,则,进而可证明,则;设,则,可得由角平分线的定义可得,则可证明,进而证明,得到,即可证明;
(3)如图所示,过点D作交延长线与H,连接,则四边形是矩形,可得,证明是等边三角形,得到,进而得到,;由旋转的性质可得,证明,得到,则点Q在直线上运动,设直线交于K,则,可得,由垂线段最短可知,当时,有最小值,则,设,则,则,;再求出,则,,由勾股定理得;由全等三角形的性质可得,则;由折叠的性质可得,由,得到当点Q在线段上时,此时有最大值,最大值为,据此代值计算即可.
【详解】(1)证明:∵,,
∴,
∵,
∴,
∵,
∴,
又∵,
∴,
∴,
∵点是的中点,
∴,
∴;
(2)证明:如图所示,过点G作于H,连接,
∵,
∴,
∵点是的中点,
∴,
∴,
∴,,
∵,
∴,
∵,
∴是等腰直角三角形,
∴;
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴;
设,则,
∴,
∵平分,
∴,
∴,
∴,
∴,
∴,
∵,
∴;
(3)解:如图所示,过点D作交延长线与H,连接,
∵,
∴,
∵,
∴四边形是矩形,
∴,
∵点是的中点,且,
∴,
∴是等边三角形,
∴,
∴,
∴,
由旋转的性质可得,
∴,
∴,
∴,
∴点Q在直线上运动,
设直线交于K,则,
∴,
由垂线段最短可知,当时,有最小值,
∴,
设,则,
∴,
∴,
∴;
在中,,
∴,
∴,
在中,由勾股定理得;
∵,
∴,
∴;
由折叠的性质可得,
∵,
∴,
∴当点Q在线段上时,此时有最大值,最大值为,
∴的最大值为.
【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,等边三角形的性质与判定,等腰直角三角的性质与判定,旋转的性质,折叠的性质,垂线段最短,矩形的性质与判定等等,解(2)的关键在于作出辅助线证明,得到;解(3)的关键在于通过手拉手模型证明点Q的运动轨迹是直线,从而根据垂线段最短确定点Q的位置.
31.(2024·重庆·中考真题)在中,,点是边上一点(点不与端点重合).点关于直线的对称点为点,连接.在直线上取一点,使,直线与直线交于点.
(1)如图1,若,求的度数(用含的代数式表示);
(2)如图1,若,用等式表示线段与之间的数量关系,并证明;
(3)如图2,若,点从点移动到点的过程中,连接,当为等腰三角形时,请直接写出此时的值.
【答案】(1)
(2)
(3)或
【分析】(1)由三角形内角和定理及外角定理结合即可求解;
(2)在上截取,连接,交于点H,连接,先证明,再证明四边形是平行四边形,可得,记与的交点为点N,则由轴对称可知:,,再解即可;
(3)连接,记与的交点为点N,由轴对称知,,,,当点G在边上时,由于,当为等腰三角形时,只能是,同(1)方法得,,中,,解得,然后,解直角三角形,表示出,,即可求解;当点G在延长线上时,只能是, 设,在中,,解得,设,解直角三角形求出,即可求解.
【详解】(1)解:如图,
∵,,
∴
∵,
∴,
∵,
∴,
∴;
(2)解:,
在上截取,连接,交于点H,
∵,
∴为等边三角形,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∵点关于直线的对称点为点,
∴,
∴,
∴,
∴,
∴四边形是平行四边形,
∴,
∴,
∴,
记与的交点为点N,
则由轴对称可知:,,
∴中,,
∴,
∴,
∴;
(3)解:连接,记与的交点为点N,
∵,
∴,
由轴对称知,
当点G在边上时,由于,
∴当为等腰三角形时,只能是,
同(1)方法得,,
∴,
∴,
∵,
∴,
∴中,,解得,
∴,而,
∴为等边三角形,
∴,
设,
∵,
∴,
∴,
∴在中,,
∵,
∴,
∴,
∴,
∴;
当点G在延长线上时,只能是,如图:
设,
∴,,
∴,
∵,
∴,
∵
∴在中,,
解得,
∴,
设,则,,
在中,,由勾股定理求得,
在中,,,
∴,
∴,
∴,
综上所述:或.
【点睛】本题考查了三角形的内角和,外角定理,全等三角形的判定与性质,平行四边形的判定与性质,解直角三角形,等腰三角形的分类讨论,等边三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解题的关键.
32.(2024·江苏连云港·中考真题)【问题情境】
(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;
【操作实践】
(2)如图3,图①是一个对角线互相垂直的四边形,四边a、b、c、d之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P为端点的四条线段之间的数量关系;
【探究应用】
(3)如图5,在图3中“④”的基础上,小昕将绕点逆时针旋转,他发现旋转过程中存在最大值.若,,当最大时,求AD的长;
(4)如图6,在中,,点D、E分别在边AC和BC上,连接DE、AE、BD.若,,求的最小值.
【答案】(1)2(2)(3)(4)
【分析】(1)利用圆与正多边形的性质分别计算两个正方形的面积可得答案;
(2)如图,由,证明,再结合图形变换可得答案;
(3)如图,将绕点逆时针旋转,可得在以为圆心,为半径的圆上运动,可得当与相切时,最大,再进一步解答即可;
(4)如图,将沿对折,的对应点为,将沿对折,的对应点为,连接,再将沿方向平移,使与重合,如图,得,由(2)可得:,当三点共线时,最短,再进一步解答即可.
【详解】解:如图,
∵正方形,及圆为正方形的内切圆,为正方形的外接正方形,
∴设,,
∴,,
∴,,
∴大正方形面积是小正方形面积的2倍.
(2)如图,∵,
∴,,
,,
∴,
如图,
结合图形变换可得:;
(3)如图,∵将绕点逆时针旋转,
∴在以为圆心,为半径的圆上运动,
∵为圆外一个定点,
∴当与相切时,最大,
∴,
∴,
由(2)可得:,
∵,,
∴
,
∴;
(4)如图,将沿对折,的对应点为,将沿对折,的对应点为,连接,
∴,,
再将沿方向平移,使与重合,如图,得,
由(2)可得:,
∴当三点共线时,最短,
∵,,
∴,,
∴;
∴的最小值为;
【点睛】本题考查的是勾股定理的应用,轴对称的性质,平移的性质,旋转的性质,圆与正多边形的关系,切线的性质,作出合适的辅助线是解本题的关键.
33.(2024·上海·中考真题)在梯形中,,点E在边上,且.
(1)如图1所示,点F在边上,且,联结,求证:;
(2)已知;
①如图2所示,联结,如果外接圆的心恰好落在的平分线上,求的外接圆的半径长;
②如图3所示,如果点M在边上,联结、、,与交于N,如果,且,,求边的长.
【答案】(1)见详解
(2)①;②
【分析】(1)延长交于点G,由,得到,由已知数据得到,,故,因此;
(2)①记点O为外接圆圆心,过点O作于点F,连接,先证明,再证明,则,即,求得;
②延长交于点P,过点E作,垂足为点Q,由,求得,可证明,角度推导得,则,求出,继而得到,由,则,设,则,由,设,,由,得到,设,可证明,求出,则,在中,运用勾股定理得:,则,在中,由勾股定理得,,故.
【详解】(1)证明:延长交于点G,
∵,
∴,
∵,
∴,,
∴,
∴;
(2)①解:记点O为外接圆圆心,过点O作于点F,连接,
∵点O为外接圆圆心,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∵平分,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
即,
∴,
∴,
∴外接圆半径为;
②延长交于点P,过点E作,垂足为点Q,
∵,
∴,
∴,
由①知,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
由,
得,
∴,
∴,
∴,
∵,
∴,
∴,
设,则,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴设,
∵,,
∴,
∴,
即,
∴,
解得:,
∴,
在中,由勾股定理得:
,
∴,
∴,
∴,
而,
∴在中,由勾股定理得,,
∵,
∴.
【点睛】本题考查了平行线分线段成比例定理,相似三角形的判定与性质,勾股定理,三角形的外接圆等知识点,熟练掌握知识点,正确添加辅助线是解题的关键.
34.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
【答案】(1)的值为;(2);(3)直角三角形的面积分别为4,16,12,
【分析】(1)根据,,.证明,,继而得到,即,再证明,得到.
(2)连接,延长交于点Q,根据(1)得,得到,根据中线得到,继而得到,结合,得到即,得到,再证明,得证矩形,再利用勾股定理,三角形相似的判定和性质计算即可.
(3)运用分类思想解答即可.
【详解】(1)∵,,.
∴,
∴,,
∴即,
∵
∴,
∴.
(2)连接,延长交于点Q,根据(1)得,
∴,
∵是中线
∴,
∴,
∵,
∴即,
∴,
∴,
∵,
∴,
∴,
∴四边形是平行四边形,
∵
∴四边形矩形,
∴,
∴,
∴,
∴,
设,则,
∵,
∴,
∴,
∵,
∴,
解得;
∴,,
∵,
∴,
∴,
∴,
∴,
解得.
(3)如图,当与重合时,此时,此时是直角三角形,
故;
如图,当在的延长线上时,此时,此时是直角三角形,
故;
如图,当时,此时是直角三角形,
过点A作于点Q,
∵,
∴,
∵,,,
∴四边形是矩形,
∴,
∴,
故;
如图,当时,此时是直角三角形,
过点A作于点Q,交于点N,
∴,,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
解得;
故.
【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.
35.(2024·河北·中考真题)已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
(1)当点B与点N重合时,求劣弧的长;
(2)当时,如图2,求点B到的距离,并求此时x的值;
(3)设点O到的距离为d.
①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
②直接写出d的最小值.
【答案】(1)
(2)点B到的距离为;
(3)①;②
【分析】(1)如图,连接,,先证明为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;
(2)过作于,过作于,连接,证明四边形是矩形,可得,,再结合勾股定理可得答案;
(3)①如图,由过点A的切线与垂直,可得过圆心,过作于,过作于,而,可得四边形为矩形,可得,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当为中点时,过作于,过作于, ,此时最短,如图,过作于,而,证明,求解,再结合等角的三角函数可得答案.
【详解】(1)解:如图,连接,,
∵的半径为3,,
∴,
∴为等边三角形,
∴,
∴的长为;
(2)解:过作于,过作于,连接,
∵,
∴,
∴四边形是矩形,
∴,,
∵,,
∴,而,
∴,
∴点B到的距离为;
∵,,
∴,
∴,
∴;
(3)解:①如图,∵过点A的切线与垂直,
∴过圆心,
过作于,过作于,而,
∴四边形为矩形,
∴,
∵,,
∴,
∴,
∴,
∴,即;
②如图,当为中点时,
过作于,过作于,
∴,
∴,此时最短,
如图,过作于,而,
∵为中点,则,
∴由(2)可得,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
设,则,
∴,
解得:(不符合题意的根舍去),
∴的最小值为.
【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.
36.(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:
【问题情境】
如图1,在中,,,点D、E在边上,且,,,求的长.
解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,
,,,
∴___①___.
∴.
又∵,
∴在中,___②___.
∵,,
∴___③___.
【问题解决】
上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.
刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.
【知识迁移】
如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.
【拓展应用】
如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).
【问题再探】
如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.
【答案】【问题解决】①;②;③5;【知识迁移】,见解析;【拓展应用】;【问题再探】
【分析】【问题解决】根据题中思路解答即可;
【知识迁移】如图,将绕点逆时针旋转,得到.过点作交边于点,连接.由旋转的特征得.结合题意得.证明,得出.根据正方形性质得出.结合,得出.证明,得出.证明.得出.在中,根据勾股定理即可求解;
【拓展应用】如图所示,设直线交延长线于点,交延长线于点,将绕着点顺时针旋转,得到,连接.则.则,,根据,证明,得出,过点H作交于点O,过点H作交于点M,则四边形为矩形.得出,证明是等腰直角三角形,得出,,在中,根据勾股定理即可证明;
【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.由旋转的特征得.根据,得出,证明,得出,根据勾股定理算出,根据,表示出,证明,根据相似三角形的性质表示出,,同理可得.,证明四边形为矩形.得出,,在中,根据勾股定理即可求解;
【详解】【问题解决】解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,,,,
∴①.
∴.
又∵,
∴在中,②.
∵,,
∴③.
【知识迁移】.
证明:如图,将绕点逆时针旋转,得到.
过点作交边于点,连接.
由旋转的特征得.
由题意得,
∴.
在和中,,
∴.
∴.
又∵为正方形的对角线,
∴.
∵,
∴.
在和中,,
∴,
∴.
在和中,,
∴.
∴.
在中,,
∴.
【拓展应用】.
证明:如图所示,设直线交延长线于点,交延长线于点,
将绕着点顺时针旋转,得到,连接.
则.
则,,
,
,
在和中
,
,
∴,
过点H作交于点O,过点H作交于点M,则四边形为矩形.
∴,
,
,
是等腰直角三角形,
,
,
,
,
,
在中,,,
∴,
即,
又∴,
∴,
即,
【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.
由旋转的特征得.
,
,
,即,
在和中,,
,
,
,
,
又,
,
,
,
,
,即,
,
同理可得.
,
,
,
又∵,
∴四边形为矩形.
,
,
在中,.
,
解得.
【点睛】本题是四边形的综合题,考查的是旋转变换的性质、矩形的性质和判定、正方形的性质和判定、勾股定理、等腰直角三角形的性质和判定、全等三角形的判定和性质,相似三角形的判定和性质,灵活运用旋转变换作图,掌握以上知识点是解题的关键.
37.(2024·北京·中考真题)在平面直角坐标系中,的半径为1,对于的弦和不在直线上的点,给出如下定义:若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”.
(1)如图,点,.
①在点,,中,点___________是弦的“可及点”,其中____________;
②若点是弦的“可及点”,则点的横坐标的最大值为__________;
(2)已知是直线上一点,且存在的弦,使得点是弦的“可及点”.记点的横坐标为,直接写出的取值范围.
【答案】(1)①,45;②
(2)或
【分析】(1)由相对运动理解,作出关于的对称圆,若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,则点C应在的圆内或圆上,先求得,根据点与圆的位置关系的判断方法分别判断即可得出在上,故符合题意,根据圆周角定理即可求解;
②取中点为H,连接,可确定点D在以H为圆心,为半径的上方半圆上运动(不包括端点A、B),当轴时,点D横坐标最大,可求,故点的横坐标的最大值为;
(2)反过来思考,由相对运动理解,作出关于的对称圆,故点P需要在的圆内或圆上,作出的外接圆,连接,则点P在以为圆心,为半径的上运动(不包括端点M、N),可求,随着的增大,会越来越靠近,当点与点重合时,点P在上,即为临界状态,此时最大,,由,故当最大,时,此时为等边三角形,此时,故当,的最大值为2,设,则,解得:,可求直线与交于点,,故t的取值范围是或.
【详解】(1)解:①:反过来思考,由相对运动理解,作出关于的对称圆,
∵若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,
∴点C应在的圆内或圆上,
∵点,,
∴,
而,
∴,
由对称得:,
∴为等腰直角三角形,
∴,
设半径为,
则,故在外,不符合题意;
,故在上,符合题意;
,故在外,不符合题意,
∴点是弦的“可及点”,
可知三点共线,
∵,
∴,
故答案为:,45;
②取中点为H,连接,
∵,
∴,
∴点D在以H为圆心,为半径的上方半圆上运动(不包括端点A、B),
∴当点轴时,点D横坐标最大,
∵,,
∴,
∴,
∵点,,
∴,
∴此时,
∴点的横坐标的最大值为,
故答案为:;
(2)解:反过来思考,由相对运动理解,作出关于的对称圆,
∵若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”,
∴点C应在的圆内或圆上,
故点P需要在的圆内或圆上,
作出的外接圆,连接,
∴点P在以为圆心,为半径的上运动(不包括端点M、N),
∴,
∴,
由对称得点在的垂直平分线上,
∵的外接圆为,
∴点也在的垂直平分线上,记与交于点Q,
∴,
∴,
随着的增大,会越来越靠近,当点与点重合时,点P在上,即为临界状态,此时最大,,
连接,
∵,
∴当最大,时,此时为等边三角形,
由上述过程知
∴,
∴当,的最大值为2,
设,则,
解得:,
而记直线与交于,与y轴交于点K,过点S作轴,
当,当时,,
解得,
∴与x轴交于点,
∴,而
∴为等边三角形,
∴,
∴,
∴,
∴t的取值范围是或.
【点睛】本题考查了新定义,轴对称变换,点与圆的位置关系,圆周角定理,解直角三角形,一次函数与坐标轴的交点问题,已知两点求距离等知识点,正确添加辅助线,找到临界状态情况是解题的关键.
38.(2024·广东·中考真题)【知识技能】
(1)如图1,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到.当点E的对应点与点A重合时,求证:.
【数学理解】
(2)如图2,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到,连接,,作的中线.求证:.
【拓展探索】
(3)如图3,在中,,点D在上,.过点D作,垂足为E,,.在四边形内是否存在点G,使得?若存在,请给出证明;若不存在,请说明理由.
【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析
【分析】(1)根据中位线的性质、旋转的性质即可证明;
(2)利用旋转的性质、外角定理、中位线的性质证明后即可证明;
(3)通过解直角三角形得到,,过点C作于点M,易证,得到,即可求得,进而,从而点M是的中点,过点D作,交于点P,连接,,,根据三线合一得,证明,即可求的,过点P作于点N,则四边形是矩形,得到,因此点N是的中点,进而,再证,得到,根据,即可推出,因此当点G与点P重合时,满足.
【详解】证明:(1)是的中位线,
且.
又绕点D按逆时针方向旋转得到
.
(2)由题意可知:,,.
作,则且,
又,
.
根据外角定理
,
,
.
又,是的中位线,
,
,
,
,
,
.
(3)存在点使得.
∵,
∴,
∴在中,,
过点C作于点M,
∴,
∵,
∴
∴,即,
∴,
∴,
∵,
∴,
∴点M是的中点,
∴是的垂直平分线,
过点D作,交于点P,连接,,
∴,
∴根据三线合一得,
∵,
∴,
∵,
∴,
∴,即,
∴,
过点P作于点N,则四边形是矩形,
∴,
∵,
∴,
∴点N是的中点,
∴垂直平分,
∴,
∴,
∵,,
∴,
又,
∴,
∴,
∵,
∴
即,
∴,
∴当点G与点P重合时,满足.
【点睛】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、解直角三角形,熟练掌握知识点以及灵活运用是解题的关键.
39.(2024·广东广州·中考真题)如图,在菱形中,.点在射线上运动(不与点,点重合),关于的轴对称图形为.
(1)当时,试判断线段和线段的数量和位置关系,并说明理由;
(2)若,为的外接圆,设的半径为.
①求的取值范围;
②连接,直线能否与相切?如果能,求的长度;如果不能,请说明理由.
【答案】(1),
(2)①且;②能,
【分析】(1)由菱形的性质可得,,再结合轴对称的性质可得结论;
(2)①如图,设的外接圆为,连接交于.连接,,,,证明为等边三角形,共圆,,在上,,过作于,当时,最小,则最小,再进一步可得答案;②如图,以为圆心,为半径画圆,可得在上,延长与交于,连接,证明,可得,为等边三角形,证明,可得:,,过作于,再进一步可得答案.
【详解】(1)解:,;理由如下:
∵在菱形中,,
∴,,
∵,
∴,
∴,
由对折可得:,
∴;
(2)解:①如图,设的外接圆为,连接交于.连接,,,,
∵四边形为菱形,,
∴, ,,
∴为等边三角形,
∴,
∴共圆,,在上,
∵,
∴,
过作于,
∴,,
∴,
当时,最小,则最小,
∵,,
∴,
∴;
点E不与B、C重合,
,且,
∴的取值范围为且;
②能为的切线,理由如下:
如图,以为圆心,为半径画圆,
∵,
∴在上,
延长与交于,连接,
同理可得为等边三角形,
∴,
∴,
∴,
∵为的切线,
∴,
∴,
∵,
∴为等边三角形,
∴,
∴,
∴,
∴,
由对折可得:,,
过作于,
∴设,
∵,
∴,
∴,
解得:,
∴,
∴.
【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键.
40.(2024·云南·中考真题)如图,是的直径,点、是上异于、的点.点在外,,延长与的延长线交于点,点在的延长线上,,.点在直径上,,点是线段的中点.
(1)求的度数;
(2)求证:直线与相切:
(3)看一看,想一想,证一证:
以下与线段、线段、线段有关的三个结论:,,,你认为哪个正确?请说明理由.
【答案】(1)
(2)见解析
(3),理由见解析
【分析】(1)直接利用直径所对的圆周角是直角,即可得出结果;
(2)证明,得到,根据平角的定义,得到,即可得证;
(3)连接,连接交于点,易得,圆周角定理得到,推出,进而得到,根据三角函数推出,得到三点共线,即可得出结果.
【详解】(1)解:∵是的直径,点是上异于、的点,
∴;
(2)证明:∵,
∴,
又∵,
∴,
∴,,
∵,
∴,
∴,
∵是半径,
∴直线与相切;
(3)我认为:正确,理由如下:
连接,连接交于点,如图,则:,
∴点在线段的中垂线上,
∵,
∴点在线段的中垂线上,
∴,
∴,
∵是的直径,
∴,
∴,
∴,
∴,
∵,
∴,
∴,,
∵为的中点,
∴,
∵,且,
∴,
∵,
∴,
∴,
∴三点共线,
∴.
【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质,解直角三角形,熟练掌握相关知识点,并灵活运用,是解题的关键.
精品试卷·第 2 页 (共 2 页)
()