【2024年全国各地中考数学真题分类汇编(第01期)】专题32 方程及函数的实际问题(47题)(原卷版+解析版)


专题32 方程及函数的实际问题(47题)
一、单选题
1.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )
A. B.
C. D.
2.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是( )
A.若,则 B.若,则
C.若x减小,则y也减小 D.若x减小一半,则y增大一倍
3.(2024·内蒙古赤峰·中考真题)用1块A型钢板可制成3块C型钢板和4块D型钢板;用1块B型钢板可制成5块C型钢板和2块D型钢板.现在需要58块C型钢板、40块D型钢板,问恰好用A型钢板、B型钢板各多少块?如果设用A型钢板x块,用B型钢板y块,则可列方程组为(  )
A. B. C. D.
4.(2024·广东深圳·中考真题)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为( )
A. B.
C. D.
5.(2024·四川甘孜·中考真题)我国古代数学名著《九章算术》记载了一道题,大意是:几个人合买一件物品,每人出8元,剩余3元;每人出7元,还差4元.设有x人,该物品价值y元,根据题意,可列出的方程组是( )
A. B.
C. D.
6.(2024·湖北·中考真题)《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值金,每只羊值金,可列方程为( )
A. B.
C. D.
7.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为,则可列方程为( )
A. B.
C. D.
8.(2024·四川内江·中考真题)某市2021年底森林覆盖率为,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到.如果这两年森林覆盖率的年平均增长率为,则符合题意得方程是( )
A. B.
C. D.
9.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
10.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )
A. B. C. D.
11.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B两种机器人每小时分别搬运多少干克化工原料?( )
A.60,30 B.90,120 C.60,90 D.90,60
12.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为,根据题意,下列方程正确的是( )
A. B.
C. D.
13.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则长为( )
A.或 B.或 C. D.
14.(2024·山东·中考真题)根据以下对话,
给出下列三个结论:
①1班学生的最高身高为;
②1班学生的最低身高小于;
③2班学生的最高身高大于或等于.
上述结论中,所有正确结论的序号是( )
A.①② B.①③ C.②③ D.①②③
二、填空题
15.(2024·江苏连云港·中考真题)杠杆平衡时,“阻力阻力臂动力动力臂”.已知阻力和阻力臂分别为和,动力为,动力臂为.则动力关于动力臂的函数表达式为 .
16.(2024·重庆·中考真题)重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为,根据题意,可列方程为 .
17.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有 个绿球.
18.(2024·山东泰安·中考真题)如图,小明的父亲想用长为60米的栅栏,再借助房屋的外墙围成一个矩形的菜园,已知房屋外墙长40米,则可围成的菜园的最大面积是 平方米.
三、解答题
19.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.
(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).
(2)当电阻R为时,求此时的电流I.
20.(2024·山东威海·中考真题)某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.
21.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.
22.(2024·山东泰安·中考真题)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共名工人.甲组每天加工件农产品,乙组每天加工件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的倍,求甲、乙两组各有多少名工人?
23.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.
根据以上信息,解答下列问题:
(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?
(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?
24.(2024·黑龙江绥化·中考真题)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买、两种电动车.若购买种电动车辆、种电动车辆,需投入资金万元;若购买种电动车辆、种电动车辆,需投入资金万元.已知这两种电动车的单价不变.
(1)求、两种电动车的单价分别是多少元?
(2)为适应共享电动车出行市场需求,该公司计划购买、两种电动车辆,其中种电动车的数量不多于种电动车数量的一半.当购买种电动车多少辆时,所需的总费用最少,最少费用是多少元?
(3)该公司将购买的、两种电动车投放到出行市场后,发现消费者支付费用元与骑行时间之间的对应关系如图.其中种电动车支付费用对应的函数为;种电动车支付费用是之内,起步价元,对应的函数为.请根据函数图象信息解决下列问题.

①小刘每天早上需要骑行种电动车或种电动车去公司上班.已知两种电动车的平均行驶速度均为3(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为,那么小刘选择______种电动车更省钱(填写或).
②直接写出两种电动车支付费用相差元时,的值______.
25.(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
26.(2024·广东深圳·中考真题)
背景 【缤纷618,优惠送大家】 今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.
素材 如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长,每增加一辆购物车,车身增加.
问题解决
任务1 若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;
任务2 若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?
任务3 若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?
27.(2024·四川广元·中考真题)近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:
价格/类别 短款 长款
进货价(元/件) 80 90
销售价(元/件) 100 120
(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;
(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
28.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)
29.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.
(1)求与与的关系式.
(2)围成的矩形花圃面积能否为,若能,求出的值.
(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.
30.(2024·黑龙江大兴安岭地·中考真题)为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.
(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?
(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?
(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)的条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?
31.(2024·内蒙古包头·中考真题)图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度(单位:)随着碗的数量(单位:个)的变化规律.下表是小亮经过测量得到的与之间的对应数据:
个 1 2 3 4
6 8.4 10.8 13.2
(1)依据小亮测量的数据,写出与之间的函数表达式,并说明理由;
(2)若整齐叠放成一摞的这种规格的碗的总高度不超过,求此时碗的数量最多为多少个?
32.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:
(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?
(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?
(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.
33.(2024·内蒙古呼伦贝尔·中考真题)某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 22
乙 25
该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.
(1)求的值;
(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润(元)与购进甲种水果的数量(千克)之间的函数关系式(写出自变量的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.
34.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.
(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?
(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
35.(2024·河南·中考真题)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为,营养成分表如下.

(1)若要从这两种食品中摄入热量和蛋白质,应选用A,B两种食品各多少包?
(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于,且热量最低,应如何选用这两种食品?
36.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.
(1)求这两种粽子的进价;
(2)设猪肉粽每盒售价元,表示该商家销售猪肉粽的利润(单位:元),求关于的函数表达式并求出的最大值.
37.(2024·广西·中考真题)综合与实践
在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.
【洗衣过程】
步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;
步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.
假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.
浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)
【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于
【动手操作】请按要求完成下列任务:
(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?
(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?
(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.
38.(2024·四川甘孜·中考真题)端午节是我国的传统节日,有吃粽子的习俗.节日前夕,某商场购进A,B两种粽子共200盒进行销售.经了解,进价与标价如下表所示(单位:元/盒):
种类 进价 标价
A 90 120
B 50 60
(1)设该商场购进A种粽子x盒,销售两种粽子所得的总利润为y元,求y关于x的函数解析式(不必写出自变量x的取值范围);
(2)若购进的200盒粽子销售完毕,总利润不低于3000元,请问至少需要购进A种粽子多少盒?
39.(2024·四川达州·中考真题)为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将、两个品种的柑橘加工包装成礼盒再出售.已知每件品种柑橘礼盒比品种柑橘礼盒的售价少元.且出售件品种柑橘礼盒和件品种柑橘礼盒的总价共元.
(1)求、两种柑橘礼盒每件的售价分别为多少元?
(2)已知加工、两种柑橘礼盒每件的成本分别为元、元、该乡镇计划在某农产品展销活动中售出、两种柑橘礼盒共盒,且品种柑橘礼盒售出的数量不超过品种柑橘礼盒数量的倍.总成本不超过元.要使农户收益最大,该乡镇应怎样安排、两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?
40.(2024·四川成都·中考真题)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共进行销售,其中A种水果收购单价10元/,B种水果收购单价15元/.
(1)求A,B两种水果各购进多少千克;
(2)已知A种水果运输和仓储过程中质量损失,若合作社计划A种水果至少要获得的利润,不计其他费用,求A种水果的最低销售单价.
41.(2024·四川广安·中考真题)某小区物管中心计划采购,两种花卉用于美化环境.已知购买2株种花卉和3株种花卉共需要21元;购买4株种花卉和5株种花卉共需要37元.
(1)求,两种花卉的单价.
(2)该物管中心计划采购,两种花卉共计10000株,其中采购种花卉的株数不超过种花卉株数的4倍,当,两种花卉分别采购多少株时,总费用最少?并求出最少总费用.
42.(2024·云南·中考真题)、两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.
某超市销售、两种型号的吉祥物,有关信息见下表:
成本(单位:元/个) 销售价格(单位:元/个)
型号 35 a
型号 42
若顾客在该超市购买8个种型号吉祥物和7个种型号吉祥物,则一共需要670元;购买4个种型号吉祥物和5个种型号吉祥物,则一共需要410元.
(1)求、的值;
(2)若某公司计划从该超市购买、两种型号的吉祥物共90个,且购买种型号吉祥物的数量(单位:个)不少于种型号吉祥物数量的,又不超过种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为元,求的最大值.
注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.
43.(2024·江西·中考真题)如图,书架宽,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚.
(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;
(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?
44.(2024·四川德阳·中考真题)罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A、B两种组合方式,其中A组合有4枚糯米咸鹅蛋和6个肉粽,B组合有6枚糯米咸鹅蛋和10个肉粽.A、B两种组合的进价和售价如下表:
价格 A B
进价(元/件) 94 146
售价(元/件) 120 188
(1)求每枚糯米咸鹅蛋和每个肉粽的进价分别为多少?
(2)根据市场需求,超市准备的B种组合数量是A种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A种组合?最大利润为多少?
45.(2024·四川眉山·中考真题)眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用元购进的款文创产品和用元购进的款文创产品数量相同.每件款文创产品进价比款文创产品进价多元.
(1)求,两款文创产品每件的进价各是多少元?
(2)已知,文创产品每件售价为元,款文创产品每件售价为元,根据市场需求,商店计划再用不超过元的总费用购进这两款文创产品共件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?
46.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.
(1)求脐橙树苗和黄金贡柚树苗的单价;
(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?
47.(2024·内蒙古通辽·中考真题)某中学为加强新时代中学生劳动教育,开辟了劳动教育实践基地.在基地建设过程中,需要采购煎蛋器和三明治机.经过调查,购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元.
(1)求煎蛋器和三明治机每台价格各是多少元;
(2)学校准备采购这两种机器共50台,其中要求三明治机的台数不少于煎蛋器台数的一半,请你给出最节省费用的购买方案.
精品试卷·第 2 页 (共 2 页)
()
专题32 方程及函数的实际问题(47题)
一、单选题
1.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )
A. B.
C. D.
【答案】C
【分析】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.根据降价后用240元可以比降价前多购买10袋,可以列出相应的分式方程.
【详解】解:由题意可得,

故选:C.
2.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是( )
A.若,则 B.若,则
C.若x减小,则y也减小 D.若x减小一半,则y增大一倍
【答案】C
【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.
【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.
∴,
∴,
当时,,故A不符合题意;
当时,,故B不符合题意;
∵,,
∴当x减小,则y增大,故C符合题意;
若x减小一半,则y增大一倍,表述正确,故D不符合题意;
故选:C.
3.(2024·内蒙古赤峰·中考真题)用1块A型钢板可制成3块C型钢板和4块D型钢板;用1块B型钢板可制成5块C型钢板和2块D型钢板.现在需要58块C型钢板、40块D型钢板,问恰好用A型钢板、B型钢板各多少块?如果设用A型钢板x块,用B型钢板y块,则可列方程组为(  )
A. B. C. D.
【答案】C
【分析】此题主要考查了二元一次方程组的应用.根据题意设用A型钢板x块,用B型钢板y块,再利用现需要58块C型钢板、40块D型钢板分别得出方程组即可.
【详解】解:设用A型钢板x块,用B型钢板y块,
由题意得:,
故选:C.
4.(2024·广东深圳·中考真题)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为( )
A. B.
C. D.
【答案】A
【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x间,房客y人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.
【详解】解:设该店有客房x间,房客y人;根据题意得:

故选:A.
5.(2024·四川甘孜·中考真题)我国古代数学名著《九章算术》记载了一道题,大意是:几个人合买一件物品,每人出8元,剩余3元;每人出7元,还差4元.设有x人,该物品价值y元,根据题意,可列出的方程组是( )
A. B.
C. D.
【答案】A
【分析】本题考查二元一次方程组解古代数学问题,读懂题意,找到等量关系列方程是解决问题的关键.
根据“每人出8元,剩余3元;每人出7元,还差4元”,即可求解.
【详解】解:∵ 每人出8元,剩余3元,
∴,
∵每人出7元,还差4元,
∴,
故所列方程组为:.
故选:A.
6.(2024·湖北·中考真题)《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值金,每只羊值金,可列方程为( )
A. B.
C. D.
【答案】A
【分析】本题考查了二元一次方程组的应用.根据未知数,将今有牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,两个等量关系具体化,联立即可.
【详解】解:设每头牛值x金,每头羊值y金,
∵牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,
∴,
故选:A.
7.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为,则可列方程为( )
A. B.
C. D.
【答案】B
【分析】本题主要考查一元二次方程的应用,正确理解题意、列出方程是解题的关键.
设该村水稻亩产量年平均增长率为,根据题意列出方程即可.
【详解】解:根据题意得:.
故选:B.
8.(2024·四川内江·中考真题)某市2021年底森林覆盖率为,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到.如果这两年森林覆盖率的年平均增长率为,则符合题意得方程是( )
A. B.
C. D.
【答案】B
【分析】本题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件.设年平均增长率为x,根据2023年底森林覆盖率2021年底森林覆盖率,据此即可列方程求解.
【详解】解:根据题意,得
即,
故选:B.
9.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
【答案】C
【分析】本题主要考查了分式方程的应用,设B种绿植单价是x元,则A种绿植单价是元,根据用6750元购买的A种绿植比用3000元购买的B种绿植少50株,列出方程即可.
【详解】解:设B种绿植单价是x元,则A种绿植单价是元,根据题意得:

故选:C.
10.(2024·黑龙江绥化·中考真题)一艘货轮在静水中的航速为,它以该航速沿江顺流航行所用时间,与以该航速沿江逆流航行所用时间相等,则江水的流速为( )
A. B. C. D.
【答案】D
【分析】此题主要考查了分式方程的应用,利用顺水速静水速水速,逆水速静水速水速,设未知数列出方程,解方程即可求出答案.
【详解】解:设江水的流速为,根据题意可得:

解得:,
经检验:是原方程的根,
答:江水的流速为.
故选:D.
11.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B两种机器人每小时分别搬运多少干克化工原料?( )
A.60,30 B.90,120 C.60,90 D.90,60
【答案】D
【分析】本题考查了分式方程的应用,设B型机器人每小时搬运x千克,则A型机器人每小时搬运千克,根据“A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等”列分式方程求解即可.
【详解】解:设B型机器人每小时搬运x千克,则A型机器人每小时搬运千克,
根据题意,得,
解得,
经检验,是原方程的解,
∴,
答:A型机器人每小时搬运90千克, B型机器人每小时搬运60千克.
故选:D.
12.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为,根据题意,下列方程正确的是( )
A. B.
C. D.
【答案】B
【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为,利用现在生产1千克甲种药品的成本两年前生产1千克甲种药品的成本年(平均下降率),即可得出关于的一元二次方程.
【详解】解:甲种药品成本的年平均下降率为,
根据题意可得,
故选:B.
13.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则长为( )
A.或 B.或 C. D.
【答案】C
【分析】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用,正确寻找题目的等量关系是解题的关键.设矩形场地垂直于墙一边长为,可以得出平行于墙的一边的长为.根据矩形的面积公式建立方程即可.
【详解】解:设矩形场地垂直于墙一边长为,
则平行于墙的一边的长为,
由题意得,
解得:,,
当时,平行于墙的一边的长为;
当时,平行于墙的一边的长为,不符合题意;
∴该矩形场地长为米,
故选C.
14.(2024·山东·中考真题)根据以下对话,
给出下列三个结论:
①1班学生的最高身高为;
②1班学生的最低身高小于;
③2班学生的最高身高大于或等于.
上述结论中,所有正确结论的序号是( )
A.①② B.①③ C.②③ D.①②③
【答案】C
【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为,最低身高为,2班同学的最高身高为,最低身高为,根据1班班长的对话,得,,然后利用不等式性质可求出,即可判断①,③;根据2班班长的对话,得,,然后利用不等式性质可求出,即可判断②.
【详解】解:设1班同学的最高身高为,最低身高为,2班同学的最高身高为,最低身高为,
根据1班班长的对话,得,,

∴,
解得,
故①错误,③正确;
根据2班班长的对话,得,,
∴,
∴,
∴,
故②正确,
故选:C.
二、填空题
15.(2024·江苏连云港·中考真题)杠杆平衡时,“阻力阻力臂动力动力臂”.已知阻力和阻力臂分别为和,动力为,动力臂为.则动力关于动力臂的函数表达式为 .
【答案】
【分析】本题考查了根据实际问题列反比例函数关系式,根据题意可得,进而即可求解,掌握杠杆原理是解题的关键.
【详解】解:由题意可得,,
∴,即,
故答案为:.
16.(2024·重庆·中考真题)重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为,根据题意,可列方程为 .
【答案】
【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为,则第二季度低空飞行航线安全运行了架次,第三季度低空飞行航线安全运行了架次,据此列出方程即可.
【详解】解:设第二、第三两个季度安全运行架次的平均增长率为,
由题意得,,
故答案为:.
17.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有 个绿球.
【答案】3
【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有个,则根据概率计算公式得到球的总数为个,则白球的数量为个,再由每种球的个数为正整数,列出不等式求解即可.
【详解】解:设袋子中绿球有个,
∵摸到绿球的概率是,
∴球的总数为个,
∴白球的数量为个,
∵每种球的个数为正整数,
∴,且x为正整数,
∴,且x为正整数,
∴x的最小值为1,
∴绿球的个数的最小值为3,
∴袋子中至少有3个绿球,
故答案为:3.
18.(2024·山东泰安·中考真题)如图,小明的父亲想用长为60米的栅栏,再借助房屋的外墙围成一个矩形的菜园,已知房屋外墙长40米,则可围成的菜园的最大面积是 平方米.
【答案】450
【分析】本题主要考查了二次函数的应用,熟练掌握并能灵活运用二次函数的性质是解题的关键.
设垂直于墙的边长为x米,则平行于墙的边长为米,又墙长为40米,从而可得,故,又菜园的面积,进而结合二次函数的性质即可解答.
【详解】解:由题意,设垂直于墙的边长为x米,则平行于墙的边长为米,
又墙长为40米,
∴.
∴.
菜园的面积,
∴当时,可围成的菜园的最大面积是450,即垂直于墙的边长为15米时,可围成的菜园的最大面积是450平方米.
故答案为:450.
三、解答题
19.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.
(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).
(2)当电阻R为时,求此时的电流I.
【答案】(1)
(2)
【分析】本题主要考查了反比例函数的实际应用:
(1)直接利用待定系数法求解即可;
(2)根据(1)所求求出当时I的值即可得到答案.
【详解】(1)解:设这个反比例函数的解析式为,
把代入中得:,
解得,
∴这个反比例函数的解析式为;
(2)解:在中,当时,,
∴此时的电流I为.
20.(2024·山东威海·中考真题)某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.
【答案】千瓦·时
【分析】本题考查分式方程的应用,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.
【详解】解:设一盏型节能灯每年的用电量为千瓦·时,
则一盏型节能灯每年的用电量为千瓦·时
整理得
解得
经检验:是原分式方程的解.
答:一盏型节能灯每年的用电量为千瓦·时.
21.(2024·四川自贡·中考真题)为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.
【答案】甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.
【分析】本题主要考查了分式方程的实际应用.设乙组每小时包个粽子,则甲组每小时包个粽子,根据时间等于总工作量除以工作效率,即可得出关于的分式方程,解之并检验后即可得出结果.
【详解】解:设乙组平均每小时包个粽子,则甲组平均每小时包个粽子,
由题意得:
,解得:,
经检验:是分式方程的解,且符合题意,
∴分式方程的解为:,

答:甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.
22.(2024·山东泰安·中考真题)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共名工人.甲组每天加工件农产品,乙组每天加工件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的倍,求甲、乙两组各有多少名工人?
【答案】甲组有名工人,乙组有名工人
【分析】本题考查了分式方程的实际应用,设甲组有名工人,则乙组有名工人.根据题意得,据此即可求解.
【详解】解:设甲组有名工人,则乙组有名工人.
根据题意得:,
解答:,
经检验,是所列方程的解,且符合题意,

答:甲组有名工人,乙组有名工人.
23.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.
根据以上信息,解答下列问题:
(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?
(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?
【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生
(2)至少种植甲作物5亩
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,
(1)设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;
(2)设种植甲作物a亩,则种植乙作物亩,根据“所需学生人数不超过55人”列不等式求解即可.
【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x、y名学生,
根据题意,得,
解得,
答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;
(2)解:设种植甲作物a亩,则种植乙作物亩,
根据题意,得:,
解得,
答:至少种植甲作物5亩.
24.(2024·黑龙江绥化·中考真题)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买、两种电动车.若购买种电动车辆、种电动车辆,需投入资金万元;若购买种电动车辆、种电动车辆,需投入资金万元.已知这两种电动车的单价不变.
(1)求、两种电动车的单价分别是多少元?
(2)为适应共享电动车出行市场需求,该公司计划购买、两种电动车辆,其中种电动车的数量不多于种电动车数量的一半.当购买种电动车多少辆时,所需的总费用最少,最少费用是多少元?
(3)该公司将购买的、两种电动车投放到出行市场后,发现消费者支付费用元与骑行时间之间的对应关系如图.其中种电动车支付费用对应的函数为;种电动车支付费用是之内,起步价元,对应的函数为.请根据函数图象信息解决下列问题.

①小刘每天早上需要骑行种电动车或种电动车去公司上班.已知两种电动车的平均行驶速度均为3(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为,那么小刘选择______种电动车更省钱(填写或).
②直接写出两种电动车支付费用相差元时,的值______.
【答案】(1)、两种电动车的单价分别为元、元
(2)当购买种电动车辆时所需的总费用最少,最少费用为元
(3)① ②或
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;
(1)设、两种电动车的单价分别为元、元,根据题意列二元一次方程组,解方程组,即可求解;
(2)设购买种电动车辆,则购买种电动车辆,根据题意得出的范围,进而根据一次函数的性质,即可求解;
(3)①根据函数图象,即可求解;
②分别求得的函数解析式,根据,解方程,即可求解.
【详解】(1)解:设、两种电动车的单价分别为元、元
由题意得,
解得
答:、两种电动车的单价分别为元、元
(2)设购买种电动车辆,则购买种电动车辆,
由题意得
解得:
设所需购买总费用为元,则
,随着 的增大而减小,
取正整数
时,最少

答:当购买种电动车辆时所需的总费用最少,最少费用为元
(3)解:①∵两种电动车的平均行驶速度均为3,小刘家到公司的距离为,
∴所用时间为分钟,
根据函数图象可得当时,更省钱,
∴小刘选择种电动车更省钱,
故答案为:.
②设,将代入得,
解得:
∴;
当时,,
当时,设,将,代入得,
解得:

依题意,当时,

解得:
当时,

解得:(舍去)或
故答案为:或.
25.(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)15天的工期,两队最多能修复公路千米.
【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用.
(1)设甲队平均每天修复公路千米,则乙队平均每天修复公路千米,根据“甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等”列分式方程求解即可;
(2)设甲队的工作时间为天,则乙队的工作时间为天,15天的工期,两队能修复公路千米,求得关于的一次函数,再利用“甲队的工作时间不少于乙队工作时间的2倍”求得的范围,利用一次函数的性质求解即可.
【详解】(1)解:设甲队平均每天修复公路千米,则乙队平均每天修复公路千米,
由题意得,
解得,
经检验,是原方程的解,且符合题意,

答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)解:设甲队的工作时间为天,则乙队的工作时间为天,15天的工期,两队能修复公路千米,
由题意得,

解得,
∵,
∴随的增加而减少,
∴当时,有最大值,最大值为,
答:15天的工期,两队最多能修复公路千米.
26.(2024·广东深圳·中考真题)
背景 【缤纷618,优惠送大家】 今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.
素材 如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长,每增加一辆购物车,车身增加.
问题解决
任务1 若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;
任务2 若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?
任务3 若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?
【答案】任务1:;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案
【分析】本题考查了求函数表达式,一元一次不等式的应用,正确掌握相关性质内容是解题的关键.
任务1:根据一辆购物车车身长,每增加一辆购物车,车身增加,且采购了n辆购物车,L是车身总长,即可作答.
任务2:结合“已知该商场的直立电梯长为,且一次可以运输两列购物车”,得出,再解不等式,即可作答.
任务3:根据“该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次”,列式,再解不等式,即可作答.
【详解】解:任务1:∵一辆购物车车身长,每增加一辆购物车,车身增加

任务2:依题意,∵已知该商场的直立电梯长为,且一次可以运输两列购物车,
令,
解得:
∴一次性最多可以运输18辆购物车;
任务3:设x次扶手电梯,则次直梯,
由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次
可列方程为:,
解得:,
∵x为整数,
∴,
方案一:直梯3次,扶梯2次;
方案二:直梯2次,扶梯3次:
方案三:直梯1次,扶梯4次
答:共有三种方案.
27.(2024·四川广元·中考真题)近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:
价格/类别 短款 长款
进货价(元/件) 80 90
销售价(元/件) 100 120
(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;
(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
【答案】(1)长款服装购进30件,短款服装购进20件;
(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.
【分析】本题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.
(1)设购进服装x件,购进长款服装y件,根据“用4300元购进长、短两款服装共50件,”列二元一次方程组计算求解;
(2)设第二次购进m件短款服装,则购进件长款服装,根据“第二次进货总价不高于16800元”列不等式计算求解,然后结合一次函数的性质分析求最值.
【详解】(1)解:设购进短款服装x件,购进长款服装y件,
由题意可得,
解得,
答:长款服装购进30件,短款服装购进20件.
(2)解:设第二次购进m件短款服装,则购进件长款服装,
由题意可得,
解得:,
设利润为w元,则,
∵,
∴w随m的增大而减小,
∴当时,
∴(元).
答:当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.
28.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)
【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元
【分析】本题主要考查了二次函数的实际应用,设每吨降价x万元,每天的利润为w万元,根据利润每吨的利润销售量列出w关于x的二次函数关系式,利用二次函数的性质求解即可.
【详解】解:设每吨降价x万元,每天的利润为w万元,
由题意得,

∵,
∴当时,w有最大值,最大值为,
∴,
答:当定价为万元每吨时,利润最大,最大值为万元.
29.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长.设垂直于墙的边长为米,平行于墙的边为米,围成的矩形面积为.
(1)求与与的关系式.
(2)围成的矩形花圃面积能否为,若能,求出的值.
(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时的值.
【答案】(1);
(2)能,
(3)的最大值为800,此时
【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:
(1)根据可求出与之间的关系,根据墙的长度可确定的范围;根据面积公式可确立二次函数关系式;
(2)令,得一元二次方程,判断此方程有解,再解方程即可 ;
(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.
【详解】(1)解:∵篱笆长,
∴,



∵墙长42m,
∴,
解得,,
∴;
又矩形面积

(2)解:令,则,
整理得:,
此时,,
所以,一元二次方程有两个不相等的实数根,
∴围成的矩形花圃面积能为;


∵,
∴;
(3)解:

∴有最大值,
又,
∴当时,取得最大值,此时,
即当时,的最大值为800
30.(2024·黑龙江大兴安岭地·中考真题)为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.
(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?
(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?
(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)的条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?
【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元
(2)共有3种购买方案
(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元
【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,
(1)设购买一个甲种品牌毽子需a元,购买一个乙种品牌毽子需b元,根据题意列出二元一次方程组,问题得解;
(2)设购买甲种品牌毽子x个,购买乙种品牌毽子个,根据题意列出一元一次不等式组,解不等式组即可求解;
(3)设商家获得总利润为y元,即有一次函数,根据一次函数的性质即可求解.
【详解】(1)解:设购买一个甲种品牌毽子需a元,购买一个乙种品牌毽子需b元.由题意得:,
解得:,
答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;
(2)解:设购买甲种品牌毽子x个,购买乙种品牌毽子个.
由题意得:,
解得:,
和均为正整数,
,62,64,
,7,4,
共有3种购买方案.
(3)设商家获得总利润为y元,



随x的增大而减小,
当时,,
答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.
31.(2024·内蒙古包头·中考真题)图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度(单位:)随着碗的数量(单位:个)的变化规律.下表是小亮经过测量得到的与之间的对应数据:
个 1 2 3 4
6 8.4 10.8 13.2
(1)依据小亮测量的数据,写出与之间的函数表达式,并说明理由;
(2)若整齐叠放成一摞的这种规格的碗的总高度不超过,求此时碗的数量最多为多少个?
【答案】(1)
(2)10个
【分析】本题考查了一次函数的应用,解题的关键是:
(1)求出每只碗增加的高度,然后列出表达式即可解答;
(2)根据(1)中y和x的关系式列出不等式求解即可.
【详解】(1)解:由表格可知,每增加一只碗,高度增加,
∴,
检验∶当时,;
当时,;
当时,;
当时,;
∴;
(2)解:根据题意,得,
解得,
∴碗的数量最多为10个.
32.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:
(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?
(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?
(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.
【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元
(2)有3种方案,详见解析
(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱
【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.
(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x元和y元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可;
(2)设商店计划购进特级鲜品猴头菇m箱,则购进特级干品猴头菇箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;
(3)根据(2)中三种方案分别求解即可;
【详解】(1)解:设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x元和y元,
则,
解得:,
故特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元;
(2)解:设商店计划购进特级鲜品猴头菇m箱,则购进特级干品猴头菇箱,
则,
解得:,
∵为正整数,
∴,
故该商店有三种进货方案,
分别为:①购进特级鲜品猴头菇40箱,则购进特级干品猴头菇40箱;
②购进特级鲜品猴头菇41箱,则购进特级干品猴头菇39箱;
③购进特级鲜品猴头菇42箱,则购进特级干品猴头菇38箱;
(3)解:当购进特级鲜品猴头菇40箱,则购进特级干品猴头菇40箱时:
根据题意得,
解得:;
当购进特级鲜品猴头菇41箱,则购进特级干品猴头菇39箱时:
根据题意得,
解得:(是小数,不符合要求);
当购进特级鲜品猴头菇42箱,则购进特级干品猴头菇38箱时:
根据题意得,
解得:(不符合要求);
故商店的进货方案是特级干品猴头菇40箱,特级鲜品猴头菇40箱.
33.(2024·内蒙古呼伦贝尔·中考真题)某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 22
乙 25
该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.
(1)求的值;
(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润(元)与购进甲种水果的数量(千克)之间的函数关系式(写出自变量的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.
【答案】(1),
(2),购进甲种水果80千克,乙种水果70千克,最大利润为1060元
【分析】本题考查了二元一次方程组的应用,一次函数的应用,解题的关键是∶
(1)根据“购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元”列方程求解即可;
(2)分,两种情况讨论,根据总利润等于甲的利润与乙的利润列出函数关系式,然后利用一次函数的性质求解即可.
【详解】(1)解:根据题意,得,
解得;
(2)解:当时,
根据题意,得,
∵,
∴随的增大而增大,
∴当时,有最大值,最大值为,
即购进甲种水果80千克,乙种水果70千克,最大利润为1060元;
当时,
根据题意,得,
∵,
∴随的增大而减小,
∴时,有最大值,最大值为,
即购进甲种水果80千克,乙种水果70千克,最大利润为1060元;
综上,,购进甲种水果80千克,乙种水果70千克,最大利润为1060元.
34.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.
(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?
(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
【答案】(1),每辆轮椅降价20元时,每天的利润最大,为元
(2)这天售出了64辆轮椅
【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:
(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;
(2)令,得到关于的一元二次方程,进行求解即可.
【详解】(1)解:由题意,得:;
∵每辆轮椅的利润不低于180元,
∴,
∴,
∵,
∴当时,随的增大而增大,
∴当时,每天的利润最大,为元;
答:每辆轮椅降价20元时,每天的利润最大,为元;
(2)当时,,
解得:(不合题意,舍去);
∴(辆);
答:这天售出了64辆轮椅.
35.(2024·河南·中考真题)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为,营养成分表如下.

(1)若要从这两种食品中摄入热量和蛋白质,应选用A,B两种食品各多少包?
(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于,且热量最低,应如何选用这两种食品?
【答案】(1)选用A种食品4包,B种食品2包
(2)选用A种食品3包,B种食品4包
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:
(1)设选用A种食品x包,B种食品y包,根据“从这两种食品中摄入热量和蛋白质”列方程组求解即可;
(2)设选用A种食品包,则选用B种食品包,根据“每份午餐中的蛋白质含量不低于”列不等式求解即可.
【详解】(1)解:设选用A种食品x包,B种食品y包,
根据题意,得
解方程组,得
答:选用A种食品4包,B种食品2包.
(2)解:设选用A种食品包,则选用B种食品包,
根据题意,得.
∴.
设总热量为,则.
∵,
∴w随a的增大而减小.
∴当时,w最小.
∴.
答:选用A种食品3包,B种食品4包.
36.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.
(1)求这两种粽子的进价;
(2)设猪肉粽每盒售价元,表示该商家销售猪肉粽的利润(单位:元),求关于的函数表达式并求出的最大值.
【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元
(2)或,当时,取得最大值为1000元
【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.
(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;
(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.
【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为元
由题意得:
解得:
经检验:是原方程的解且符合题意

答:猪肉粽每盒50元,豆沙粽每盒30元.
(2)解:设猪肉粽每盒售价元,表示该商家销售猪肉粽的利润(单位:元),则
∵,,
∴当时,取得最大值为1000元.
37.(2024·广西·中考真题)综合与实践
在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.
【洗衣过程】
步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;
步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.
假设第一次漂洗前校服上残留洗衣液浓度为,每次拧干后校服上都残留水.
浓度关系式:.其中、分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:)
【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于
【动手操作】请按要求完成下列任务:
(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为,需要多少清水?
(2)如果把清水均分,进行两次漂洗,是否能达到洗衣目标?
(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.
【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.
(2)进行两次漂洗,能达到洗衣目标;
(3)两次漂洗的方法值得推广学习
【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;
(1)把,代入, 再解方程即可;
(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;
(3)根据(1)(2)的结果得出结论即可.
【详解】(1)解:把,代入
得,
解得.经检验符合题意;
∴只经过一次漂洗,使校服上残留洗衣液浓度降为,需要清水.
(2)解:第一次漂洗:
把,代入,
∴,
第二次漂洗:
把,代入,
∴,
而,
∴进行两次漂洗,能达到洗衣目标;
(3)解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,
∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.
38.(2024·四川甘孜·中考真题)端午节是我国的传统节日,有吃粽子的习俗.节日前夕,某商场购进A,B两种粽子共200盒进行销售.经了解,进价与标价如下表所示(单位:元/盒):
种类 进价 标价
A 90 120
B 50 60
(1)设该商场购进A种粽子x盒,销售两种粽子所得的总利润为y元,求y关于x的函数解析式(不必写出自变量x的取值范围);
(2)若购进的200盒粽子销售完毕,总利润不低于3000元,请问至少需要购进A种粽子多少盒?
【答案】(1);
(2)至少需要购进种粽子50盒.
【分析】本题主要考查一次函数的应用、一元一次不等式的应用,熟练掌握以上知识点是解题的关键.
(1)根据“总利润种粽子利润种粽子利润”,即可得出答案;
(2)根据题意列出不等关系式即可得出答案.
【详解】(1)解:根据题意,

答:关于的函数解析式为;
(2)解:,
解得:,
故若购进的200盒粽子销售完毕,总利润不低于3000元,至少需要购进种粽子50盒.
39.(2024·四川达州·中考真题)为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将、两个品种的柑橘加工包装成礼盒再出售.已知每件品种柑橘礼盒比品种柑橘礼盒的售价少元.且出售件品种柑橘礼盒和件品种柑橘礼盒的总价共元.
(1)求、两种柑橘礼盒每件的售价分别为多少元?
(2)已知加工、两种柑橘礼盒每件的成本分别为元、元、该乡镇计划在某农产品展销活动中售出、两种柑橘礼盒共盒,且品种柑橘礼盒售出的数量不超过品种柑橘礼盒数量的倍.总成本不超过元.要使农户收益最大,该乡镇应怎样安排、两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?
【答案】(1)、两种柑橘礼盒每件的售价分别为元
(2)要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元
【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;
(1)设、两种柑橘礼盒每件的售价分别为a元,b元,根据题意列出二元一次方程组,即可求解;
(2)设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意列出不等式组,得出,设收益为元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.
【详解】(1)解:设、两种柑橘礼盒每件的售价分别为元,b元,根据题意得,
解得:
答:、两种柑橘礼盒每件的售价分别为元;
(2)解:设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意得,
解得:
设收益为元,根据题意得,

∴随的增大而减小,
∴当时,取得最大值,最大值为(元)
∴售出种柑橘礼盒(盒)
答:要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元.
40.(2024·四川成都·中考真题)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共进行销售,其中A种水果收购单价10元/,B种水果收购单价15元/.
(1)求A,B两种水果各购进多少千克;
(2)已知A种水果运输和仓储过程中质量损失,若合作社计划A种水果至少要获得的利润,不计其他费用,求A种水果的最低销售单价.
【答案】(1)A种水果购进1000千克,B种水果购进500千克
(2)A种水果的最低销售单价为元/
【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,
(1)设A种水果购进x千克, B种水果购进y千克,根据题意列出二元一次方程组求解即可.
(2)根据题意列出关于利润和进价与售价的不等式求解即可.
【详解】(1)解:设A种水果购进x千克, B种水果购进y千克,
根据题意有:,
解得:,
∴A种水果购进1000千克,B种水果购进500千克
(2)设A种水果的销售单价为元/,
根据题意有:,
解得,
故A种水果的最低销售单价为元/
41.(2024·四川广安·中考真题)某小区物管中心计划采购,两种花卉用于美化环境.已知购买2株种花卉和3株种花卉共需要21元;购买4株种花卉和5株种花卉共需要37元.
(1)求,两种花卉的单价.
(2)该物管中心计划采购,两种花卉共计10000株,其中采购种花卉的株数不超过种花卉株数的4倍,当,两种花卉分别采购多少株时,总费用最少?并求出最少总费用.
【答案】(1)种花卉的单价为3元/株,种花卉的单价为5元/株
(2)当购进种花卉8000株,种花卉2000株时,总费用最少,最少费用为34000元
【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.
(1)设种花卉的单价为元/株,种花卉的单价为元/株,根据题意列出二元一次方程组,解方程组即可求解;
(2)设采购种花卉株,则种花卉株,总费用为元,根据题意列出不等式,得出,进而根据题意,得到,根据一次函数的性质即可求解.
【详解】(1)解:设种花卉的单价为元/株,种花卉的单价为元/株,
由题意得:,
解得:,
答:种花卉的单价为3元/株,种花卉的单价为5元/株.
(2)解:设采购种花卉株,则种花卉株,总费用为元,
由题意得:,

解得:,
在中,

随的增大而减小,
当时的值最小,

此时.
答:当购进种花卉8000株,种花卉2000株时,总费用最少,最少费用为34000元.
42.(2024·云南·中考真题)、两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.
某超市销售、两种型号的吉祥物,有关信息见下表:
成本(单位:元/个) 销售价格(单位:元/个)
型号 35 a
型号 42
若顾客在该超市购买8个种型号吉祥物和7个种型号吉祥物,则一共需要670元;购买4个种型号吉祥物和5个种型号吉祥物,则一共需要410元.
(1)求、的值;
(2)若某公司计划从该超市购买、两种型号的吉祥物共90个,且购买种型号吉祥物的数量(单位:个)不少于种型号吉祥物数量的,又不超过种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为元,求的最大值.
注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.
【答案】(1)
(2)
【分析】本题考查了一次函数、一元一次不等式、二元一次方程组的应用,根据题意正确列出方程和函数解析式是解题的关键.
(1)根据“购买8个种型号吉祥物和7个种型号吉祥物,则一共需要670元;购买4个种型号吉祥物和5个种型号吉祥物,则一共需要410元”建立二元一次方程组求解,即可解题;
(2)根据“且购买种型号吉祥物的数量(单位:个)不少于种型号吉祥物数量的,又不超过种型号吉祥物数量的2倍.”建立不等式求解,得到,再根据总利润种型号吉祥物利润种型号吉祥物利润建立关系式,最后根据一次函数的性质即可得到的最大值.
【详解】(1)解:由题知,,
解得;
(2)解:购买种型号吉祥物的数量个,
则购买种型号吉祥物的数量个,
且购买种型号吉祥物的数量(单位:个)不少于种型号吉祥物数量的,

解得,
种型号吉祥物的数量又不超过种型号吉祥物数量的2倍.

解得,
即,
由题知,,
整理得,
随的增大而减小,
当时,的最大值为.
43.(2024·江西·中考真题)如图,书架宽,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚.
(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;
(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?
【答案】(1)书架上有数学书60本,语文书30本.
(2)数学书最多还可以摆90本
【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.
(1)首先设这层书架上数学书有本,则语文书有本,根据题意可得等量关系:本数学书的厚度本语文书的厚度,根据等量关系列出方程求解即可;
(2)设数学书还可以摆m本,根据题意列出不等式求解即可.
【详解】(1)解:设书架上数学书有本,由题意得:

解得:,

∴书架上有数学书60本,语文书30本.
(2)设数学书还可以摆m本,
根据题意得:,
解得:,
∴数学书最多还可以摆90本.
44.(2024·四川德阳·中考真题)罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A、B两种组合方式,其中A组合有4枚糯米咸鹅蛋和6个肉粽,B组合有6枚糯米咸鹅蛋和10个肉粽.A、B两种组合的进价和售价如下表:
价格 A B
进价(元/件) 94 146
售价(元/件) 120 188
(1)求每枚糯米咸鹅蛋和每个肉粽的进价分别为多少?
(2)根据市场需求,超市准备的B种组合数量是A种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A种组合?最大利润为多少?
【答案】(1)16元, 6元
(2)25件, 3590元
【分析】本题考查二元一次方程组的应用、不等式的应用和一次函数的性质,根据题意列出式子是本题的关键.
(1)根据表格与“A组合有4枚糯米咸鹅蛋和6个肉粽,B组合有6枚糯米咸鹅蛋和10个肉粽”即可列方程求解;
(2)设A种组合的数量,表示出B种组合数量,根据“两种组合的总件数不超过95件”列不等式求出A种组合的数量的最大值,再根据题意表示出利润的表达式,根据一次函数的性质即可求得结果.
【详解】(1)解:设每枚糯米咸鹅蛋的进价元,每个肉粽的进价元.
根据题意可得:

解得:

答:每枚糯米咸鹅蛋的进价16元,每个肉粽的进价6元.
(2)解:设该超市应准备件A种组合,则B种组合数量是件,利润为W元,
根据题意得:,
解得:,
则利润,
可以看出利润是的一次函数,随着的增大而增大,
∴当最大时,最大,
即当时,,
答:为使利润最大,该超市应准备25件A种组合,最大利润3590元.
45.(2024·四川眉山·中考真题)眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用元购进的款文创产品和用元购进的款文创产品数量相同.每件款文创产品进价比款文创产品进价多元.
(1)求,两款文创产品每件的进价各是多少元?
(2)已知,文创产品每件售价为元,款文创产品每件售价为元,根据市场需求,商店计划再用不超过元的总费用购进这两款文创产品共件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?
【答案】(1)款文创产品每件的进价元,文创产品每件的进价是元;
(2)购进款文创产品件,购进款文创产品件,才能使销售完后获得的利润最大,最大利润是元.
【分析】()设款文创产品每件的进价元,则文创产品每件的进价是元,根据题意,列出分式方程即可求解;
()设购进款文创产品件,则购进款文创产品件,总利润为,利用一次一次不等式求出的取值范围,再根据题意求出与的一次函数,根据一次函数的性质解答即可求解;
本题考查了分式方程的应用,一次函数的应用,根据题意,列出分式方程和一次函数解析式是解题的关键.
【详解】(1)解:设款文创产品每件的进价元,则文创产品每件的进价是元,
根据题意得,,
解得,
经检验,是原分式方程的解,

答:款文创产品每件的进价元,则文创产品每件的进价是元;
(2)解:设购进款文创产品件,则购进款文创产品件,总利润为,
根据题意得,,
解得,
又由题意得,,
,随的增大而增大,
当时,利润最大,
∴购进款文创产品件,购进款文创产品件,获得的利润最大,,
答:购进款文创产品件,购进款文创产品件,才能使销售完后获得的利润最大,最大利润是元.
46.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.
(1)求脐橙树苗和黄金贡柚树苗的单价;
(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?
【答案】(1)50元、30元
(2)400棵
【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:
(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;
(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.
【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,
根据题意,得,
解得,
答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;
(2)解:设购买脐橙树苗a棵,则购买黄金贡柚树苗棵,
根据题意,得,
解得,
答:最多可以购买脐橙树苗400棵.
47.(2024·内蒙古通辽·中考真题)某中学为加强新时代中学生劳动教育,开辟了劳动教育实践基地.在基地建设过程中,需要采购煎蛋器和三明治机.经过调查,购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元.
(1)求煎蛋器和三明治机每台价格各是多少元;
(2)学校准备采购这两种机器共50台,其中要求三明治机的台数不少于煎蛋器台数的一半,请你给出最节省费用的购买方案.
【答案】(1)煎蛋器单价为65元/台,三明治机单价为110元/台;
(2)购买方案为:购买煎蛋器33台,三明治机17台.
【分析】(1)设煎蛋器每台x元,三明治机每台y元,根据购头2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元,列出方程组,解方程组即可;
(2)设煎蛋器采购a台,则三明治机采购台,根据三明治机的台数不少于煎蛋器台数的一半,列出不等式,可得的范围,设总的购买费用为元,再结合一次函数的性质可得答案.
【详解】(1)解:设煎蛋器每台x元,三明治机每台y元.
由题意得:,
解得:,
答:煎蛋器单价为65元/台,三明治机单价为110元/台;
(2)解:设煎蛋器采购a台,则三明治机采购台,
由题意得:,
解得:,
∵a只能取正整数,
∴a的最大值为33,
设总的购买费用为元,


∵,
∴当时,费用最低,
此时的购买方案为:购买煎蛋器33台,三明治机17台;
答:购买方案为:购买煎蛋器33台,三明治机17台.
【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,确定相等关系与不等关系是解本题的关键.
精品试卷·第 2 页 (共 2 页)
()

延伸阅读:

标签:

上一篇:【2024年全国各地中考数学真题分类汇编(第01期)】专题29 数据的收集、整理及分析(50题)(原卷版+解析版)

下一篇:【2024年全国各地中考数学真题分类汇编(第01期)】专题35 几何综合压轴题(40题)(原卷版+解析版)