专题03 功和能
1.(2024·安徽·高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h的粗糙斜坡顶端由静止下滑,至底端时速度为v.已知人与滑板的总质量为m,可视为质点.重力加速度大小为g,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( )
A. B. C. D.
【答案】D
【详解】人在下滑的过程中,由动能定理可得
可得此过程中人与滑板克服摩擦力做的功为
故选D。
2.(2024·江西·高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为、,则动能和周期的比值为( )
A. B.
C. D.
【答案】A
【详解】两个质量相同的卫星绕月球做匀速圆周运动,则月球对卫星的万有引力提供向心力,设月球的质量为M,卫星的质量为m,则半径为r1的卫星有
半径为r2的卫星有
再根据动能,可得两卫星动能和周期的比值分别为
,
故选A。
3.(2024·江西·高考真题)庐山瀑布“飞流直下三千尺,疑是银河落九天”瀑布高150m,水流量10m3/s,假设利用瀑布来发电,能量转化效率为70%,则发电功率为( )
A.109W B.107W C.105W D.103W
【答案】B
【详解】由题知,Δt时间内流出的水量为
m = ρQΔt = 1.0×104Δt
发电过程中水的重力势能转化为电能,则有
故选B。
4.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
【答案】B
【详解】AB.由足球的运动轨迹可知,足球在空中运动时一定受到空气阻力作用,则从从1到2重力势能增加,则1到2动能减少量大于,A错误,B正确;
CD.从2到3由于空气阻力作用,则机械能减小,重力势能减小mgh,则动能增加小于,选项CD错误。
故选B。
5.(多选)(2024·广东·高考真题)如图所示,光滑斜坡上,可视为质点的甲、乙两个相同滑块,分别从、高度同时由静止开始下滑。斜坡与水平面在O处平滑相接,滑块与水平面间的动摩擦因数为,乙在水平面上追上甲时发生弹性碰撞。忽略空气阻力。下列说法正确的有( )
A.甲在斜坡上运动时与乙相对静止
B.碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度
C.乙的运动时间与无关
D.甲最终停止位置与O处相距
【答案】ABD
【详解】A.两滑块在光滑斜坡上加速度相同,同时由静止开始下滑,则相对速度为0,故A正确;
B.两滑块滑到水平面后均做匀减速运动,由于两滑块质量相同,且发生弹性碰撞,可知碰后两滑块交换速度,即碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度,故B正确;
C.设斜面倾角为θ,乙下滑过程有
在水平面运动一段时间t2后与甲相碰,碰后以甲碰前速度做匀减速运动t3,乙运动的时间为
由于t1与有关,则总时间与有关,故C错误;
D.乙下滑过程有
由于甲和乙发生弹性碰撞,交换速度,则可知甲最终停止位置与不发生碰撞时乙最终停止的位置相同;则如果不发生碰撞,乙在水平面运动到停止有
联立可得
即发生碰撞后甲最终停止位置与O处相距。故D正确。
故选ABD。
6.(2024·福建·高考真题)两绳拉木板,每条拉力F = 250N,15s内匀速前进20m,θ = 22.5°,cos22.5° ≈ 0.9。求:
(1)阻力f大小;
(2)两绳拉力做的功;
(3)两绳拉力的总功率。
【答案】(1)450N;(2)9.0 × 103J;(3)600W
【详解】(1)由于木板匀速运动则有
2Fcosθ = f
带入数据解得
f = 450N
(2)根据功的定义式有
W = 2Flcosθ
带入数据解得
W = 9.0 × 103J
(3)根据功率的定义式有
带入数据有
P = 600W
(2024·上海·高考真题)汽车智能化
我国的汽车智能化技术发展迅猛。各类车载雷达是汽车自主感知系统的重要组成部分。汽车在检测到事故风险后,通过自主决策和自主控制及时采取措施,提高了安全性。
7.车载雷达系统可以发出激光和超声波信号,其中( )
A.仅激光是横波 B.激光与超声波都是横波
C.仅超声波是横波 D.激光与超声波都不是横波
8.一辆质量的汽车,以的速度在平直路面上匀速行驶,此过程中发动机功率,汽车受到的阻力大小为 N。当车载雷达探测到前方有障码物时,主动刹车系统立即撤去发动机驱动力,同时施加制动力使车辆减速。在刚进入制动状态的瞬间,系统提供的制动功率,此时汽车的制动力大小为 N,加速度大小为 。(不计传动装置和热损耗造成的能量损失)
【答案】7.A 8. 600
【解析】7.车载雷达系统发出的激光是横波,超声波信号是纵波。
故选A。
8.[1]根据题意可知,汽车匀速行驶,则牵引力等于阻力,则与
其中
,
解得
[2]根据题意,由可得,汽车的制动力大小为
[3]由牛顿第二定律可得,加速度大小为
9.(2024·山东·高考真题)如图所示,质量均为m的甲、乙两同学,分别坐在水平放置的轻木板上,木板通过一根原长为l的轻质弹性绳连接,连接点等高且间距为d(d
C. D.
【答案】B
【详解】当甲所坐木板刚要离开原位置时,对甲及其所坐木板整体有
解得弹性绳的伸长量
则此时弹性绳的弹性势能为
从开始拉动乙所坐木板到甲所坐木板刚要离开原位置的过程,乙所坐木板的位移为
则由功能关系可知该过程F所做的功
故选B。
10.(2024·安徽·高考真题)在某地区的干旱季节,人们常用水泵从深水井中抽水灌溉农田,简化模型如图所示。水井中的水面距离水平地面的高度为H。出水口距水平地面的高度为h,与落地点的水平距离约为l。假设抽水过程中H保持不变,水泵输出能量的倍转化为水被抽到出水口处增加的机械能。已知水的密度为,水管内径的横截面积为S,重力加速度大小为g,不计空气阻力。则水泵的输出功率约为( )
A. B.
C. D.
【答案】B
【详解】设水从出水口射出的初速度为,取时间内的水为研究对象,该部分水的质量为
根据平抛运动规律
解得
根据功能关系得
联立解得水泵的输出功率为
故选B。
11.(2024·福建·高考真题)先后两次从高为高处斜向上抛出质量为同一物体落于,测得,两轨迹交于P点,两条轨迹最高点等高且距水平地面高为,下列说法正确的是( )
A.第一次抛出上升时间,下降时间比值为
B.第一次过P点比第二次机械能少
C.落地瞬间,第一次,第二次动能之比为
D.第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大
【答案】B
【详解】A.第一次抛出上升的高度为
故上升时间为
最高点距水平地面高为,故下降的时间为
故一次抛出上升时间,下降时间比值为,故A错误;
B.两条轨迹最高点等高,故可知两次从抛出到落地的时间相等为
故可得第一次,第二次抛出时水平方向的分速度分别为
由于两条轨迹最高点等高,故抛出时竖直方向的分速度相等为
由于物体在空中机械能守恒,故第一次过P点比第二次机械能少
故B正确;
C.从抛出到落地瞬间根据动能定理
故落地瞬间,第一次,第二次动能之比为,故C错误;
D.根据前面分析可知两次抛出时竖直方向的分速度相同,两次落地时物体在竖直方向的分速度也相同,由于第一次的水平分速度较小,物体在水平方向速度不变,故可知第一次抛出时速度与水平方向的夹角较大,第一次落地时速度与水平方向的夹角也较大,故可知第一次抛出时速度方向与落地瞬间速度方向夹角比第二次大,故D错误。
故选B。
12.(多选)(2024·广东·高考真题)如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞。在接近某行星表面时以的速度竖直匀速下落。此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接。已知探测器质量为1000kg,背罩质量为50kg,该行星的质量和半径分别为地球的和。地球表面重力加速度大小取。忽略大气对探测器和背罩的阻力。下列说法正确的有( )
A.该行星表面的重力加速度大小为
B.该行星的第一宇宙速度为
C.“背罩分离”后瞬间,背罩的加速度大小为
D.“背罩分离”后瞬间,探测器所受重力对其做功的功率为30kW
【答案】AC
【详解】A.在星球表面,根据
可得
行星的质量和半径分别为地球的和。地球表面重力加速度大小取,可得该行星表面的重力加速度大小
故A正确;
B.在星球表面上空,根据万有引力提供向心力
可得星球的第一宇宙速度
行星的质量和半径分别为地球的和,可得该行星的第一宇宙速度
地球的第一宇宙速度为,所以该行星的第一宇宙速度
故B错误;
C.“背罩分离”前,探测器及其保护背罩和降落伞整体做匀速直线运动,对探测器受力分子,可知探测器与保护背罩之间的作用力
“背罩分离”后,背罩所受的合力大小为4000N,对背罩,根据牛顿第二定律
解得
故C正确;
D.“背罩分离”后瞬间探测器所受重力对其做功的功率
故D错误。
故选AC。
13.(多选)(2024·广西·高考真题)如图,坚硬的水平地面上放置一木料,木料上有一个竖直方向的方孔,方孔各侧壁完全相同。木栓材质坚硬,形状为正四棱台,上下底面均为正方形,四个侧面完全相同且与上底面的夹角均为。木栓质量为m,与方孔侧壁的动摩擦因数为。将木栓对准方孔,接触但无挤压,锤子以极短时间撞击木栓后反弹,锤子对木栓冲量为I,方向竖直向下。木栓在竖直方向前进了的位移,未到达方孔底部。若进入的过程方孔侧壁发生弹性形变,弹力呈线性变化,最大静摩擦力约等于滑动摩擦力,则( )
A.进入过程,木料对木栓的合力的冲量为
B.进入过程,木料对木栓的平均阻力大小约为
C.进入过程,木料和木栓的机械能共损失了
D.木栓前进后木料对木栓一个侧面的最大静摩探力大小约为
【答案】BD
【详解】A.锤子撞击木栓到木栓进入过程,对木栓分析可知合外力的冲量为0,锤子对木栓的冲量为I,由于重力有冲量,则木料对木栓的合力冲量不为-I,故A错误;
B.锤子撞击木栓后木栓获得的动能为
木栓进入过程根据动能定理有
解得平均阻力为
故B正确;
C.木栓进入过程损失的动能与重力势能,一部分转化为系统内能另一部分转化为木栓的弹性势能,
故C错误;
D.对木栓的一个侧面受力分析如图
由于方孔侧壁弹力成线性变化,则有
且根据B选项求得平均阻力
又因为
联立可得
故D正确。
故选BD。
14.(2024·山东·高考真题)如图甲所示,质量为M的轨道静止在光滑水平面上,轨道水平部分的上表面粗糙,竖直半圆形部分的表面光滑,两部分在P点平滑连接,Q为轨道的最高点。质量为m的小物块静置在轨道水平部分上,与水平轨道间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。已知轨道半圆形部分的半径R=0.4m,重力加速度大小g=10m/s2.
(1)若轨道固定,小物块以一定的初速度沿轨道运动到Q点时,受到轨道的弹力大小等于3mg,求小物块在Q点的速度大小v;
(2)若轨道不固定,给轨道施加水平向左的推力F,小物块处在轨道水平部分时,轨道加速度a与F对应关系如图乙所示。
(i)求μ和m;
(ii)初始时,小物块静置在轨道最左端,给轨道施加水平向左的推力F=8N,当小物块到P点时撤去F,小物块从Q点离开轨道时相对地的速度大小为7m/s。求轨道水平部分的长度L。
【答案】(1);(2)(i),;(3)
【详解】(1)根据题意可知小物块在Q点由合力提供向心力有
代入数据解得
(2)(i)根据题意可知当F≤4N时,小物块与轨道是一起向左加速,根据牛顿第二定律可知
根据图乙有
当外力时,轨道与小物块有相对滑动,则对轨道有
结合题图乙有
可知
截距
联立以上各式可得
,,
(ii)由图乙可知,当F=8N时,轨道的加速度为6m/s2,小物块的加速度为
当小物块运动到P点时,经过t0时间,则轨道有
小物块有
在这个过程中系统机械能守恒有
水平方向动量守恒,以水平向左的正方向,则有
联立解得
根据运动学公式有
代入数据解得
15.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J
【详解】(1)对A物块由平抛运动知识得
代入数据解得,脱离弹簧时A的速度大小为
AB物块质量相等,同时受到大小相等方向相反的弹簧弹力及大小相等方向相反的摩擦力,则AB物块整体动量守恒,则
解得脱离弹簧时B的速度大小为
(2)对物块B由动能定理
代入数据解得,物块与桌面的动摩擦因数为
(3)弹簧的弹性势能转化为AB物块的动能及这个过程中克服摩擦力所做的功,即
其中
,
解得整个过程中,弹簧释放的弹性势能
16.(2024·浙江·高考真题)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a滑块b上滑动时动摩擦因数恒为,小物块a动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
【答案】(1)①16m/s2;②2m;③1∶2;(2)0.2m
【详解】(1)①对小物块a从A到第一次经过C的过程,根据机械能守恒定律有
第一次经过C点的向心加速度大小为
②小物块a在DE上时,因为
所以小物块a每次在DE上升至最高点后一定会下滑,之后经过若干次在DE上的滑动使机械能损失,最终小物块a将在B、D间往复运动,且易知小物块每次在DE上向上运动和向下运动的距离相等,设其在上经过的总路程为s,根据功能关系有
解得
③根据牛顿第二定律可知小物块a在DE上向上运动和向下运动的加速度大小分别为
将小物块a在DE上的若干次运动等效看作是一次完整的上滑和下滑,则根据运动学公式有
解得
(2)对小物块a从A到F的过程,根据动能定理有
解得
设滑块长度为l时,小物块恰好不脱离滑块,且此时二者达到共同速度v,根据动量守恒定律和能量守恒定律有
解得
17.(2024·湖北·高考真题)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
【答案】(1);(2);(3)
【详解】(1)根据题意,小物块在传送带上,由牛顿第二定律有
解得
由运动学公式可得,小物块与传送带共速时运动的距离为
可知,小物块运动到传送带右端前与传送带共速,即小物块与小球碰撞前瞬间,小物块的速度大小等于传送带的速度大小。
(2)小物块运动到右端与小球正碰,碰撞时间极短,小物块与小球组成的系统动量守恒,以向右为正方向,由动量守恒定律有
其中
,
解得
小物块与小球碰撞过程中,两者构成的系统损失的总动能为
解得
(3)若小球运动到P点正上方,绳子恰好不松弛,设此时P点到O点的距离为,小球在P点正上方的速度为,在P点正上方,由牛顿第二定律有
小球从点正下方到P点正上方过程中,由机械能守恒定律有
联立解得
即P点到O点的最小距离为。
试卷第2页,共19页
()
5
专题03 功和能
1.(2024·安徽·高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h的粗糙斜坡顶端由静止下滑,至底端时速度为v.已知人与滑板的总质量为m,可视为质点.重力加速度大小为g,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( )
A. B. C. D.
2.(2024·江西·高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为、,则动能和周期的比值为( )
A. B.
C. D.
3.(2024·江西·高考真题)庐山瀑布“飞流直下三千尺,疑是银河落九天”瀑布高150m,水流量10m3/s,假设利用瀑布来发电,能量转化效率为70%,则发电功率为( )
A.109W B.107W C.105W D.103W
4.(2024·浙江·高考真题)如图所示,质量为m的足球从水平地面上位置1被踢出后落在位置3,在空中达到最高点2的高度为h,则足球( )
A.从1到2动能减少 B.从1到2重力势能增加
C.从2到3动能增加 D.从2到3机械能不变
5.(多选)(2024·广东·高考真题)如图所示,光滑斜坡上,可视为质点的甲、乙两个相同滑块,分别从、高度同时由静止开始下滑。斜坡与水平面在O处平滑相接,滑块与水平面间的动摩擦因数为,乙在水平面上追上甲时发生弹性碰撞。忽略空气阻力。下列说法正确的有( )
A.甲在斜坡上运动时与乙相对静止
B.碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度
C.乙的运动时间与无关
D.甲最终停止位置与O处相距
6.(2024·福建·高考真题)两绳拉木板,每条拉力F = 250N,15s内匀速前进20m,θ = 22.5°,cos22.5° ≈ 0.9。求:
(1)阻力f大小;
(2)两绳拉力做的功;
(3)两绳拉力的总功率。
(2024·上海·高考真题)汽车智能化
我国的汽车智能化技术发展迅猛。各类车载雷达是汽车自主感知系统的重要组成部分。汽车在检测到事故风险后,通过自主决策和自主控制及时采取措施,提高了安全性。
7.车载雷达系统可以发出激光和超声波信号,其中( )
A.仅激光是横波 B.激光与超声波都是横波
C.仅超声波是横波 D.激光与超声波都不是横波
8.一辆质量的汽车,以的速度在平直路面上匀速行驶,此过程中发动机功率,汽车受到的阻力大小为 N。当车载雷达探测到前方有障码物时,主动刹车系统立即撤去发动机驱动力,同时施加制动力使车辆减速。在刚进入制动状态的瞬间,系统提供的制动功率,此时汽车的制动力大小为 N,加速度大小为 。(不计传动装置和热损耗造成的能量损失)
9.(2024·山东·高考真题)如图所示,质量均为m的甲、乙两同学,分别坐在水平放置的轻木板上,木板通过一根原长为l的轻质弹性绳连接,连接点等高且间距为d(d
C. D.
10.(2024·安徽·高考真题)在某地区的干旱季节,人们常用水泵从深水井中抽水灌溉农田,简化模型如图所示。水井中的水面距离水平地面的高度为H。出水口距水平地面的高度为h,与落地点的水平距离约为l。假设抽水过程中H保持不变,水泵输出能量的倍转化为水被抽到出水口处增加的机械能。已知水的密度为,水管内径的横截面积为S,重力加速度大小为g,不计空气阻力。则水泵的输出功率约为( )
A. B.
C. D.
11.(2024·福建·高考真题)先后两次从高为高处斜向上抛出质量为同一物体落于,测得,两轨迹交于P点,两条轨迹最高点等高且距水平地面高为,下列说法正确的是( )
A.第一次抛出上升时间,下降时间比值为
B.第一次过P点比第二次机械能少
C.落地瞬间,第一次,第二次动能之比为
D.第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大
12.(多选)(2024·广东·高考真题)如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞。在接近某行星表面时以的速度竖直匀速下落。此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接。已知探测器质量为1000kg,背罩质量为50kg,该行星的质量和半径分别为地球的和。地球表面重力加速度大小取。忽略大气对探测器和背罩的阻力。下列说法正确的有( )
A.该行星表面的重力加速度大小为
B.该行星的第一宇宙速度为
C.“背罩分离”后瞬间,背罩的加速度大小为
D.“背罩分离”后瞬间,探测器所受重力对其做功的功率为30kW
13.(多选)(2024·广西·高考真题)如图,坚硬的水平地面上放置一木料,木料上有一个竖直方向的方孔,方孔各侧壁完全相同。木栓材质坚硬,形状为正四棱台,上下底面均为正方形,四个侧面完全相同且与上底面的夹角均为。木栓质量为m,与方孔侧壁的动摩擦因数为。将木栓对准方孔,接触但无挤压,锤子以极短时间撞击木栓后反弹,锤子对木栓冲量为I,方向竖直向下。木栓在竖直方向前进了的位移,未到达方孔底部。若进入的过程方孔侧壁发生弹性形变,弹力呈线性变化,最大静摩擦力约等于滑动摩擦力,则( )
A.进入过程,木料对木栓的合力的冲量为
B.进入过程,木料对木栓的平均阻力大小约为
C.进入过程,木料和木栓的机械能共损失了
D.木栓前进后木料对木栓一个侧面的最大静摩探力大小约为
14.(2024·山东·高考真题)如图甲所示,质量为M的轨道静止在光滑水平面上,轨道水平部分的上表面粗糙,竖直半圆形部分的表面光滑,两部分在P点平滑连接,Q为轨道的最高点。质量为m的小物块静置在轨道水平部分上,与水平轨道间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。已知轨道半圆形部分的半径R=0.4m,重力加速度大小g=10m/s2.
(1)若轨道固定,小物块以一定的初速度沿轨道运动到Q点时,受到轨道的弹力大小等于3mg,求小物块在Q点的速度大小v;
(2)若轨道不固定,给轨道施加水平向左的推力F,小物块处在轨道水平部分时,轨道加速度a与F对应关系如图乙所示。
(i)求μ和m;
(ii)初始时,小物块静置在轨道最左端,给轨道施加水平向左的推力F=8N,当小物块到P点时撤去F,小物块从Q点离开轨道时相对地的速度大小为7m/s。求轨道水平部分的长度L。
15.(2024·辽宁·高考真题)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
16.(2024·浙江·高考真题)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a滑块b上滑动时动摩擦因数恒为,小物块a动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
17.(2024·湖北·高考真题)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
试卷第2页,共19页
()
7