2023-2024浙教版八年级(下)期末数学模拟试卷2(含解析)


2023-2024学年浙教版八年级(下)期末数学模拟试卷2
姓名:__________班级:__________考号:__________总分__________
题号 一 二 三 总分
得分
1 、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是( )
A.B.C.D.
若式子在实数范围内有意义,则x的取值范围是
一元二次方程2x2﹣5x﹣2=0的根的情况是(  )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
甲、乙、丙、丁四名同学参加竞定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是(  )
A.甲 B.乙 C.丙 D.丁
一元二次方程x2﹣3x+1=0的根的情况(  )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法确定
下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是正方形
如图,直线y=ax+b(a≠0)与双曲线y=(k≠0)交于点A(﹣2,4)和点B(m,﹣2),则不等式0<ax+b<的解集是(  )
A.﹣2<x<4 B.﹣2<x<0 C.x<﹣2或0<x<4 D.﹣2<x<0或x>4
帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是(  )
A.极差是6 B.众数是7 C.中位数是5 D.方差是8
如图,在平面直角坐标系中,一次函数y=x+b的图象分别与x轴、y轴交于A.B两点,且与反比例函数y=在第一象限内的图象交于点C.若点A坐标为(2,0),,则k的值是(  )
A. B. C. D.
如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为(  )
A.2+2 B.5﹣ C.3﹣ D.+1
1 、填空题(本大题共6小题,每小题3分,共18分)
计算:4﹣9=   .
已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是 _____________
从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是S甲2=2.83,S乙2=1.71,S丙2=3.52,你认为适合参加决赛的选手是   .
已知一个多边形的每一个外角都等于72°,则这个多边形的边数是   .
小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为_____dm.
将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=_____.
1 、解答题(本大题共8小题,共52分)
小敏与小霞两位同学解方程的过程如下框:
小敏:两边同除以,得,则. 小霞:移项,得,提取公因式,得.则或,解得,.
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
(1)计算:﹣+|﹣2|;
(2)化简:(a+3)(a﹣2)﹣a(a﹣1).
某校组织全校800名学生开展安全教育,为了解该校学生对安全知识的掌握程度,现随机抽取40名学生进行安全知识测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.
①将样本数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100,并制作了如图所示的不完整的频数分布直方图,
②在80≤x<90这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,88,89.
根据以上信息,解答下列问题:
(1)补全频数分布直方图,
(2)抽取的40名学生成绩的中位数是    ,
(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?
如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).
(1)分别求直线AC和双曲线对应的函数表达式;
(2)连接OA,OB,求△AOB的面积;
(3)直接写出当x>0时,关于x的不等式kx+b>的解集.
随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.
①若该养老中心建成后可提供养老床位200个,求t的值;
②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是      ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).
(1)当t为何值时,点B在线段PQ的垂直平分线上?
(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.
答案解析
1 、选择题
【考点】中心对称图形
【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B、是轴对称图形,不是中心对称图形,故本选项不合题意;
C、是中心对称图形,故本选项符合题意;
D、是轴对称图形,不是中心对称图形,故本选项不合题意.
故选:C.
【点评】本题考查了中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
【考点】二次根式有意义的条件..
【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解:根据题意得:x+1≥0,
解得x≥﹣1,
故答案为:x≥﹣1.
【点评】考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.
【考点】根的判别式.
【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.
解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,
∴方程有两个不相等的实数根.
故选B.
【点评】本题难度较低,主要考查学生对根的判别式的掌握。
【考点】方差,算术平均数.
【分析】根据方差的意义求解即可.
解:∵,,,,
∴丁的方差最小,
∴成绩最稳定的是丁,
故选:D.
【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差,反之,则它与其平均值的离散程度越小,稳定性越好.
【考点】根的判别式.
【分析】先计算根的判别式的值得到Δ>0,然后根据根的判别式的意义对各选项进行判断.
解:∵Δ=(﹣3)2﹣4×1×1=5>0,
∴方程有两个不相等的实数根.
故选:B.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.
【考点】正方形的判定,矩形的判定,菱形的判定,平行四边形的判定
【分析】A.根据平行四边形的判定定理作出判断;B、根据矩形的判定定理作出判断;C、根据菱形的判定定理作出判断;D、根据正方形的判定定理作出判断.
解:A.对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;
B、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;
C、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意;
故选:B.
【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.
【考点】反比例函数与一次函数的交点问题.
【分析】求出一次函数和反比例函数的解析式,根据图示直接得出不等式的解集.
解:∵A(﹣2,4)在反比例函数图象上,
∴k=xy=﹣2×4=﹣8,
∴反比例函数解析式为:y=﹣,
又∵B(m,﹣2)在y=﹣图象上,
∴m=4,
∴B(4,﹣2),
∵点A(﹣2,4)、B(4,﹣2)在一次函数y=ax+b的图象上,
∴,解得,
一次函数解析式为:y=﹣x+2.
由图象可知,不等式0<ax+b<的解集﹣2<x<0.
故选:B.
【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数交点的坐
标满足两个函数关系式.
【考点】折线统计图,中位数,众数,极差,方差
【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.
解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.
A.极差=11﹣3=8,结论错误,故A不符合题意,
B.众数为5,7,11,3,9,结论错误,故B不符合题意,
C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意,
D.平均数是(5+7+11+3+9)÷5=7,
方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.
结论正确,故D符合题意,
故选:D.
【点评】本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.
【考点】反比例函数与一次函数的交点问题.
【分析】代入A点到一次函数中,得出一次函数解析式,再求出B点坐标,连接CO,根据=,以及△COA和△AOB等高,所以S△COA:S△AOB=1:2,又因为两个三角形共用一条边OA,作CH⊥OA,得到CH:OB=1:2,求出CH长度,即C点纵坐标,代入一次函数中求出C点坐标,再求出k值.
解:连接CO,作CH⊥OA交坐标轴于H点(如图),
∵A点在一次函数图象中,代入得到b=,
∴一次函数解析式:y=,
∵B点横坐标为0,
∴代入得到纵坐标为,OB=,
∵△COA和△AOB等高,且,
∴S△COA:S△AOB=1:2,
又∵△COA和△AOB共用一条边OA,
∴CH:OB=1:2,
∴CH==,
∴将C的纵坐标代入一次函数中,得到横坐标为3,
∴C点坐标(3,),
∴k=3×=,
故选:C.
【点评】本题考查学生反比例函数一次函数的综合运用,属于重难点题型.
【考点】正方形的性质,等边三角形的性质,勾股定理.
【分析】过点E作EG⊥DF于点G,作EH⊥BC于点H,利用解直角三角形可得EH=1,BH=,再证明△BEH≌△DEG,可得DG=BH=,即可求得答案.
解:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,
则∠BHE=∠DGE=90°,
∵△ABC是边长为2的等边三角形,
∴AB=2,∠ABC=60°,
∵四边形ABED是正方形,
∴BE=DE=2,∠ABE=∠BED=90°,
∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,
∴EH=BE sin∠EBH=2 sin30°=2×=1,BH=BE cos∠EBH=2cos30°=,
∵EG⊥DF,EH⊥BC,DF⊥BC,
∴∠EGF=∠EHB=∠DFH=90°,
∴四边形EGFH是矩形,
∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,
∵∠DEG+∠BEG=90°,
∴∠BEH=∠DEG,
在△BEH和△DEG中,

∴△BEH≌△DEG(AAS),
∴DG=BH=,
∴DF=DG+FG=+1,
故选:D.
【点评】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、解直角三角形,题目的综合性很好,难度不大.
1 、填空题
【考点】二次根式的加减法.
【分析】先化简,再做减法运算即可.
解:原式=12=3,
故答案为:3.
【点评】本题考查了二次根式的加减法,能正确根据二次根式的运算法则进行计算是解此题的关键,注意运算顺序.
【考点】 根与系数的关系.
【分析】由根与系数的关系可得x1+x2=3、x1 x2=-2,将其代入(x1﹣1)(x2﹣1)=x1 x2﹣(x1+x2)+1中,即可求出结论.
解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,
∴x1+x2=3、x1 x2=-2,
∴(x1﹣1)(x2﹣1)=x1 x2﹣(x1+x2)+1=﹣2﹣3+1=﹣4.
故答案为:﹣4.
【点评】本题考查了根与系数的关系,根据根与系数的关系,找出x1+x2=3、x1 x2=-2是解题的关键.
【考点】方差
【分析】根据方差的定义,方差越小数据越稳定即可求解.
解:∵S甲2=2.83,S乙2=1.71,S丙2=3.52,
而1.71<2.83<3.52,
∴乙的成绩最稳定,
∴派乙去参赛更好,
故答案为乙.
【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定,反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【考点】 多边形内角与外角.
【分析】用多边形的外角和360°除以72°即可.
解:边数n=360°÷72°=5.
故答案为:5.
【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.
【考点】正方形的性质
【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.
解:∵正方形ABCD的边长为4dm,
∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,
∴图2中h的值为(4+)dm.
故答案为:(4+).
【点评】本题主要考查正方形的性质,解题的关键是求出②④⑥⑦的高.
【考点】反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征
【分析】由于一次函数y=kx 2 k(k>0)的图象过定点P(1, 2),而点P(1, 2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx 2 k(k>0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.
解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,
因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,
平移前,这两个点的坐标为为(a﹣1,),(,b+2),
∴a﹣1=﹣,
∴(a﹣1)(b+2)=﹣3,
故答案为:﹣3.
【点评】本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.
1 、解答题
【考点】解一元二次方程
【分析】根据因式分解法解一元二次方程
解:
小敏:两边同除以,得,则.(×) 小霞:移项,得,提取公因式,得.则或,解得,.(×)
正确解答:
移项,得,
提取公因式,得,
去括号,得,
则或,
解得,.
【点评】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键.
【考点】实数的运算;单项式乘多项式;多项式乘多项式
【分析】(1)先化简二次根式、计算立方根、去绝对值符号,再计算加减可得;
(2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得.
解:(1)原式=2﹣2+2﹣=;
(2)原式=a2﹣2a+3a﹣6﹣a2+a
=2a﹣6.
【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握二次根式的性质、立方根的定义及绝对值的性质、多项式乘多项式、单项式乘多项式的运算法则.
【考点】频数(率)分布直方图,中位数,用样本估计总体.
【分析】(1)样本容量减去其余4组人数即可,
(2)根据中位数的意义,判断出中位数处于80≤x<90这组,再按求中位数的方法求出即可,
(3)先算出样本中优秀人数所占百分比,再乘以学生总数即可.
解:(1)在70≤x<80这组的人数为:40﹣4﹣6﹣12﹣10=8(人),
补全频数分布直方图如下:
(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,
∵数据处于较小的三组中有4+6+8=18(个)数据,
∴中位数应是80≤x<90这一组第2,3个数据的平均数,
∴中位数为:=82(分),
故答案为:82分,
(3)∵样本中优秀的百分比为:,
∴可以估计该校800名学生中对安全知识掌握程度为优秀的学生约有:55%×800=440(人),
答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.
【点评】本题考查频数分布直方图,中位数,用样本估计总体,熟练掌握相关概念的意义是解题的关键.
【考点】全等三角形的判定与性质,平行四边形的判定和性质
【分析】(1)利用ASA即可证明;
(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;
(1)证明:∵AD∥EC,
∴∠A=∠BEC,
∵E是AB中点,
∴AE=EB,
∵∠AED=∠B,
∴△AED≌△EBC.
(2)解:∵△AED≌△EBC,
∴AD=EC,
∵AD∥EC,
∴四边形AECD是平行四边形,
∴CD=AE,
∵AB=6,
∴CD=AB=3.
【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)将已知点坐标代入函数表达式,即可求解;
(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;
(3)根据图象即可解决问题.
解:(1)将A(1,2),C(4,0)代入y=kx+b,
得,
解得:,
∴直线AC的解析式为y=﹣x+,
将A(1,2)代入y=(x>0),
得m=2,
∴双曲线的解析式为y=(x>0);
(2)∵直线AC的解析式为y=﹣x+与y轴交点D,
∴点D的坐标为(0,),
∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,
∴,
∴,,
∴点B的坐标为(3,),
∴△AOB的面积=4×﹣4×﹣×1=;
(3)观察图象,
∵A(1,2),B(3,),
∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.
【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.
【考点】一次函数的应用;一元一次方程的应用;一元二次方程的应用.
【分析】(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;
(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;
②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.
解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:
2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市这两年拥有的养老床位数的平均年增长率为20%.
(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,
由题意得:t+4t+3=200,
解得:t=25.
答:t的值是25.
②设该养老中心建成后能提供养老床位y个,
由题意得:y=t+4t+3=﹣4t+300(10≤t≤30),
∵k=﹣4<0,
∴y随t的增大而减小.
当t=10时,y的最大值为300﹣4×10=260(个),
当t=30时,y的最小值为300﹣4×30=180(个).
答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
【点评】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键. 
【考点】 四边形综合题.
【分析】(1)利用正方形的性质得出角与线段的关系,易证得△APE≌△DPF,可得出AE=DF,即可得出结论DE+DF=AD,
(2)取AD的中点M,连接PM,利用菱形的性质,可得出△MDP是等边三角形,易证△MPE≌△FPD,得出ME=DF,由DE+ME=AD,即可得出DE+DF=AD,
(3)①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DE+DF逐渐增大,当点F与点C重合时DE+DF最大,即AD<DE+DF≤AD.
解:(1)正方形ABCD的对角线AC,BD交于点P,
∴PA=PD,∠PAE=∠PDF=45°,
∵∠APE+∠EPD=∠DPF+∠EPD=90°,
∴∠APE=∠DPF,
在△APE和△DPF中
∴△APE≌△DPF(ASA),
∴AE=DF,
∴DE+DF=AD,
(2)如图②,取AD的中点M,连接PM,
∵四边形ABCD为∠ADC=120°的菱形,
∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,
∴△MDP是等边三角形,
∴PM=PD,∠PME=∠PDF=60°,
∵∠PAM=30°,
∴∠MPD=60°,
∵∠QPN=60°,
∴∠MPE=∠FPD,
在△MPE和△FPD中,
∴△MPE≌△FPD(ASA)
∴ME=DF,
∴DE+DF=AD,
(3)如图,
在整个运动变化过程中,
①当点E落在AD上时,DE+DF=AD,
②当点E落在AD的延长线上时,DE+DF逐渐增大,当点F与点C重合时DE+DF最大,
即AD<DE+DF≤AD.
【点评】本题主要考查了四边形的综合题,涉及全等三角形,正方形及菱形的性质,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与线段之间的等量关系.
【考点】四边形综合题
【分析】(1)连接PB,由点B在线段PQ的垂直平分线上,推出BP=BQ,由此构建方程即可解决问题;
(2)分两种情形分别构建方程求解即可;
(3)如图4中,连接QC,作QE⊥AC于E,作QF⊥BC于F.则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4.S根据=S△QNC+S△PCQ= CN QF+ PC QE,计算即可;
解:(1)如图1中,连接BP.
在Rt△ACB中,∵AC=BC=4,∠C=90°,
∴AB=4
∵点B在线段PQ的垂直平分线上,
∴BP=BQ,
∵AQ=t,CP=t,
∴BQ=4﹣t,PB2=42+t2,
∴(4﹣t)2=16+t2,
解得t=8﹣4或8+4(舍弃),
∴t=(8﹣4)s时,点B在线段PQ的垂直平分线上.
(2)①如图2中,当PQ=QA时,易知△APQ是等腰直角三角形,∠AQP=90°.
则有PA=AQ,
∴4﹣t= t,
解得t=.
②如图3中,当AP=PQ时,易知△APQ是等腰直角三角形,∠APQ=90°.
则有:AQ=AP,
∴t=(4﹣t),
解得t=2,
综上所述:t=s或2s时,△APQ是以PQ为腰的等腰三角形.
(3)如图4中,连接QC,作QE⊥AC于E,作QF⊥BC于F.则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4.
∵S=S△QNC+S△PCQ= CN QF+ PC QE=t(QE+QF)=2t(0<t<4).
【点评】本题考查四边形综合题、等腰直角三角形的性质、等腰三角形的判定和性质、线段的垂直平分线的性质定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()

延伸阅读:

标签:

上一篇:[佩佩教育]2024年普通高校招生统一考试金榜题名卷(6月)政治试题!

下一篇:河北省邢台市信都区2023-2024下学期6月月考八年级数学试题(图片版含答案)