山西省晋中市榆次区 2023-2024八年级下学期期中考试数学试卷(图片版含答案)

揄次区2023-2024学年第二学期期叶中学业水平质量监侧题(卷
八年级数学


淮考证号
注意事项:
1.本试卷共8页,满分100分,考试时间90分钟:
2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置,
3.答全部在答题卡上完成,答在本试卷上无效,
4.考试结束后,将本试卷和答题卡一并交回,
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的
四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.在当今网络信息时代电子产品己经渗透到我们生活的方方面面,下面与电
子产品有关的图标中,是中心对称图形但不是轴对称图形的是
4
B
2如果xAx-1>y-1
B.3x>3y
4<4
D.-2x<-2y
3如图是一个三叶吊扇,当第一个叶片转动到第二个叶片的位置时,它转过
的度数是
A.60°
B.120°
C.180°
D.360°
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通
要塞.该大桥限重标志牌显示限重30吨,即载重后总质量
超过30吨的车辆禁止通行.已知一辆货车载货后的总质
量为a吨,如果货车能正常通行,则a满足的不等式为
A.a230
B.a>30
C.0D.0八年级数学试题第1页(共8页)
5.如图,将△ABC沿AB方向平移得到△AB'C.若AB=4cm,AB'=10cm,
则平移距离为
A.3cm
B.4cm
B
C.7cm
D.10cm
x+3>0①
6.解不等式组
时,将不等式①②的解集表示在同一条数轴上,
2x≤4②
正确的是
02
A
B
C
D
7某市为了进一步完善城市功能,提升城市形象,加强体育事业的发展,准
备修建一个大型体育中心,要求该体育中心所在位置与该市的三个城镇中
心(图中以P,2,R表示)的距离相等,则体育
中心的位置应选在
A.△PQR三边的垂直平分线的交点处
B.△POR的三条角平分线的交点处
C.△PQR的三条高线的交点处
D.△PQR的三条中线的交点处
8用反证法证明“一个三角形中不能有两个角为钝角”时,应先假设
A.一个三角形中不能有两个角为锐角
B.一个三角形中不能有两个角为钝角
C.一个三角形中能有两个角为锐角
D.一个三角形中能有两个角为钝角
9.如图,在△ABC中,∠C=90°,AB=5,BC=3,点D,E分别是为边AC,
BC上的点,连接DE,DB,若DE∥AB且DE平分∠CDB,则△CDB的
周长为
D
A.5
B.7
C.8
D.9
八年级数学试题第2页(共8页)榆次区 2023-2024学年第二学期期中学业水平质量监测题
八年级数学参考答案及评分标准
一、选择题
1 2 3 4 5 6 7 8 9 10
C C B D A B A D B C
二、填空题
11. 1,2 12. x>1 13. 25 14. 8
15. 有一个内角是直角(或一个内角是另一个内角的2倍且其中另一个内角小于45°)
三、解答题(本大题含 8个小题,共 75分)
16. (6分)
x 8 3x , ①

6(x 2) 5x 8 . ②
解:解不等式①得:x≤2.····························································· 2 分
解不等式②得:x>﹣4.··························································4 分
在同一条数轴上表示不等式组的解集,如下:
··············································· 5 分
∴原不等式组的解集为﹣4<x≤2. ·········································· 6 分
17.(7分)
解:(1)A(1,0),B(5,0),C(3, 2 3 );························· 3 分
(2)如图所示,△A1B1C1即为所求;
······································ 4 分
B1(8,﹣2);······························································5 分
(3)如图所示,△A2B2C2即为所求;
1
······································ 6 分
B2(﹣5,0). ······························································ 7 分
18.(6分)
解:设小明想参加本次竞赛得分超过 60 分,他需要答对 x道题,········ 1 分
根据题意,得 5x﹣2(20-x)>60.··········································3 分
100
解这个不等式,得 x .·················································· 4 分
7
因为 x为整数,所以 x的最小值为 15.······································· 5 分
答:小明想参加本次竞赛得分超过 60 分,他至少需要答对 15 道题.
·························································································6 分
19.(5分)
证明:∵AB平分∠CAD,BC⊥AC,BD⊥AD,
∴BC=BD,∠C=∠D=90°.············· 2 分
∵在 Rt△BCE和 Rt△BDF中,
BE BF ,

BC BD,
∴Rt△BCE≌Rt△BDF.·····················4 分
∴CE=DF.······································5 分
20.(7分)
解:(1)甲基地:y 甲=30x,························································ 2 分
乙基地:y 乙=25x+200.····················································· 4 分
(2)由 y 甲 < y 乙,得 30x<25x+200,······································ 5 分
解得 x<40.·································································6 分
答:购买的树苗少于 40 株时,去甲基地采购比较合算.
······································································· 7 分
21.(10分)
解:(1)边角边或 SAS;····························································2 分
(2)逆命题:在直角三角形中,如果一个锐角等于 30°,那么它所对的
直角边等于斜边的一半;·································· 4 分
已知:如图,在△ABC中,∠ACB=90°,∠BAC=30°.············5 分
1
求证: BC AB .························································· 6 分
2
(图形)······································································7 分
证明:如图,延长 BC至点 D,使得 CD=BC,连接 AD. ······· 8 分
2
∵∠ACB=90°,∠BAC=30°,
∴∠ACD=90°,∠B=60°.
又∵AC=AC,
∴△ABC≌△ADC.
∴AB=AD.
∴△ABD是等边三角形.·····················································9 分
∴BC= 1 BD= 1 AB.·························································· 10 分
2 2
22.(10分)
(1)证明:∵△ABC为等边三角形,
∴∠B=∠C=60°.······························· 1 分
∴在△CDN中,
∠DNC=180°﹣∠C-∠NDC=120°-∠NDC.2 分
又∵∠BDM+∠NDC+∠EDF=180°,······3 分
∴∠BDM=180°﹣∠EDF-∠NDC=120°-∠NDC.
∴∠BDM=∠DNC.······························ 4 分
(2)解:△DMN是等边三角形.················· 5 分
理由如下:
由(1)得:∠BDM=∠DNC,∠B=∠C.
又∵BM=CD,
∴△BDM≌△CND.···························· 6 分
∴DM=DN.······································· 7 分
又∵∠EDF=60°,
∴△DMN是等边三角形.······················8 分
(3)3 3 . ············································································· 10 分
23.(4分)
影响最深或最喜欢的数学内容.·················································· 2 分
原因.····················································································4 分
(言之有理即可)
意图:帮助教师了解学生的数学学习喜好及兴趣、对数学的认识等,基于
学情及时反思和改进教学,真正关注学生成长,在教学中让学生经历数学
的学习运用、实践探索活动的经验积累,逐步产生对数学的好奇心、求知
欲,以及对数学学习的兴趣和自信心,初步形成自我反思的意识;帮助学
生建立能体现数学学科本质、对未来学习有支撑意义的结构化的数学知识
体系;帮助学生学会用整体的、联系的、发展的眼光看问题,落实学科核
心素养。
3

延伸阅读:

标签:

上一篇:2023-2024外研版(一起)英语五年级下册 Module 1 单元测试( 含答案及听力原文无听力音频)

下一篇:2023-2024外研版(一起)英语五年级下册 Module 9 单元测试(含答案及听力原文无听力音频)