2024学年江苏省无锡市中考数学模拟预测题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
2.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
3.tan60°的值是( )
A. B. C. D.
4.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
5.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个根是 0
6.下列判断错误的是( )
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
7.如图是由四个相同的小正方体堆成的物体,它的正视图是( )
A. B. C. D.
8.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是( )
A. B.6 C. D.
9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为( )
A.y=x+1 B.y=x-1 C.y=x D.y=x-2
10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
D.抛物线的对称轴是直线x=
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
12.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
13.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.
14.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.
15.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 ▲ .
16.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.
三、解答题(共8题,共72分)
17.(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
18.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
19.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
20.(8分)在数学课上,老师提出如下问题:
小楠同学的作法如下:
老师说:“小楠的作法正确.”
请回答:小楠的作图依据是______________________________________________.
21.(8分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
22.(10分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
23.(12分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
(1)求证:∠BDP=90°.
(2)若m=4,求BE的长.
(3)在点P的整个运动过程中.
①当AF=3CF时,求出所有符合条件的m的值.
②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解题分析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
2、C
【解题分析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【题目详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
3、A
【解题分析】
根据特殊角三角函数值,可得答案.
【题目详解】
tan60°=
故选:A.
【题目点拨】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
4、B
【解题分析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
5、A
【解题分析】
判断根的情况,只要看根的判别式△=b2 4ac的值的符号就可以了.
【题目详解】
∵一次函数y=kx+b的图像经过第一、三、四象限
∴k>0, b<0
∴△=b2 4ac=(-2)2-4(kb+1)=-4kb>0,
∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
【题目点拨】
根的判别式
6、A
【解题分析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【题目详解】
解:、对角线相等的四边形是矩形,错误;
、对角线相互垂直平分的四边形是菱形,正确;
、对角线相互垂直且相等的平行四边形是正方形,正确;
、对角线相互平分的四边形是平行四边形,正确;
故选:.
【题目点拨】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
7、A
【解题分析】
【分析】根据正视图是从物体的正面看得到的图形即可得.
【题目详解】从正面看可得从左往右2列正方形的个数依次为2,1,
如图所示:
故选A.
【题目点拨】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
8、B
【解题分析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
【题目详解】
第一排1个数,第二排2个数.第三排3个数,第四排4个数,
…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,
根据数的排列方法,每四个数一个轮回,
由此可知:(1,5)表示第1排从左向右第5个数是,
(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,
第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,
则(1,5)与(13,1)表示的两数之积是1.
故选B.
9、A
【解题分析】向左平移一个单位长度后解析式为:y=x+1.
故选A.
点睛:掌握一次函数的平移.
10、D
【解题分析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;
B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、由抛物线开口向上,可得出y无最大值,C选项错误;
D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
综上即可得出结论.
【题目详解】
解:A、∵a=1>0,
∴抛物线开口向上,A选项错误;
B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
∴c=1,
∴抛物线的解析式为y=x1-3x+1.
当y=0时,有x1-3x+1=0,
解得:x1=1,x1=1,
∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、∵抛物线开口向上,
∴y无最大值,C选项错误;
D、∵抛物线的解析式为y=x1-3x+1,
∴抛物线的对称轴为直线x=-=-=,D选项正确.
故选D.
【题目点拨】
本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣1
【解题分析】
根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.
【题目详解】
解:∵关于x的方程x2 2x+n=1没有实数根,
∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,
∴n>2,
∴|2 n |-│1-n│=n-2-n+1=-1.
故答案为-1.
【题目点拨】
本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.
12、(2,3)
【解题分析】
试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
考点:二次函数的性质
13、
【解题分析】
先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
【题目详解】
分别过点 作y轴的垂线交y轴于点,
∵点B在上
设
∴
同理, 都是含30°的直角三角形
∵,
∴
同理,点 的横坐标为
纵坐标为
故点的坐标为
故答案为:;.
【题目点拨】
本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
14、
【解题分析】
由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
【题目详解】
∵四边形ABCD、CEFG均为正方形,
∴CD=AD=3,CG=CE=5,
∴DG=2,
在Rt△DGF中, DF==,
∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
∴∠FDG=∠IDA.
又∵∠DAI=∠DGF,
∴△DGF∽△DAI,
∴,即,解得:DI=,
∴矩形DFHI的面积是=DF DI=,
故答案为:.
【题目点拨】
本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
15、k<且k≠1.
【解题分析】
根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:
∵有两个不相等的实数根,
∴△=1-4k>1,且k≠1,解得,k<且k≠1.
16、
【解题分析】
首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.
【题目详解】
∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,
∴指针落在惊蛰、春分、清明的概率是:.
故答案为
【题目点拨】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
三、解答题(共8题,共72分)
17、(1);(2)1或9.
【解题分析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
18、(1)证明见解析;(2);(3)证明见解析.
【解题分析】
(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
(2)利用正弦的定义计算;
(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
【题目详解】
(1)证明:连接OA,
由圆周角定理得,∠ACB=∠ADB,
∵∠ADE=∠ACB,
∴∠ADE=∠ADB,
∵BD是直径,
∴∠DAB=∠DAE=90°,
在△DAB和△DAE中,
,
∴△DAB≌△DAE,
∴AB=AE,又∵OB=OD,
∴OA∥DE,又∵AH⊥DE,
∴OA⊥AH,
∴AH是⊙O的切线;
(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
∴∠E=∠ACD,
∴AE=AC=AB=1.
在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
∴sin∠ADB==,即sin∠ACB=;
(3)证明:由(2)知,OA是△BDE的中位线,
∴OA∥DE,OA=DE.
∴△CDF∽△AOF,
∴=,
∴CD=OA=DE,即CD=CE,
∵AC=AE,AH⊥CE,
∴CH=HE=CE,
∴CD=CH,
∴CD=DH.
【题目点拨】
本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
19、△A′DE是等腰三角形;证明过程见解析.
【解题分析】
试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
∴CD=DA=DB,
∴∠DAC=∠DCA,
∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA,
∴∠DA′E=∠DEA′,
∴DA′=DE,
∴△A′DE是等腰三角形.
∵四边形DEFD′是菱形,
∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
20、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.
【解题分析】
根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.
【题目详解】
解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的
性质:对角线互相平分即可得到BD=CD,
所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互
相平分;两点确定一条直线.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点
确定一条直线.
【题目点拨】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.
21、(1)作图见解析;.(2)作图见解析;(3)1.
【解题分析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
22、(1),;(2)证明见解析.
【解题分析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x1,
∵该方程的一个根为1,∴.解得.
∴a的值为,该方程的另一根为.
(2)∵,
∴不论a取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
23、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
【解题分析】
由知,再由知、,据此可得,证≌即可得;
易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
【题目详解】
如图1,
,
,
,
、,
,
,
≌,
.
,,
,
,
,
四边形ABEF是矩形,
设,则,
,
,
,
,
≌,
,
≌,
,
在中,,即,
解得:,
的长为1.
如图1,当点C在AF的左侧时,
,则,
,
,,
在中,由可得,
解得:负值舍去;
如图2,当点C在AF的右侧时,
,
,
,
,,
在中,由可得,
解得:负值舍去;
综上,m的值为或;
如图3,过点D作于点G,延长GD交BE于点H,
≌,
,
又,且,
,
当点D在矩形ABEF的内部时,
由可设、,
则,
,
则;
如图4,当点D在矩形ABEF的外部时,
由可设、,
则,
,
则,
综上,与面积比为或.
【题目点拨】
本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
24、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)
【解题分析】
试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;
(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF,
理由是:∵四边形ABCD是正方形,
∴AD=DC,∠ADE=∠DCF=90°,
∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,
∴DE=CF,
在△ADE和△DCF中
,
∴,
∴AE=DF,∠DAE=∠FDC,
∵∠ADE=90°,∴∠ADP+∠CDF=90°,
∴∠ADP+∠DAE=90°,
∴∠APD=180°-90°=90°,
∴AE⊥DF;
(2)(1)中的结论还成立,
有两种情况:
①如图1,当AC=CE时,
设正方形ABCD的边长为a,由勾股定理得,
,
则;
②如图2,当AE=AC时,
设正方形ABCD的边长为a,由勾股定理得:
,
∵四边形ABCD是正方形,
∴∠ADC=90°,即AD⊥CE,
∴DE=CD=a,
∴CE:CD=2a:a=2;
即CE:CD=或2;
(3)∵点P在运动中保持∠APD=90°,
∴点P的路径是以AD为直径的圆,
如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,
此时CP的长度最大,
∵在Rt△QDC中,
∴,
即线段CP的最大值是.
点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.