湖北省恩施土家族苗族自治州来凤县实验中学2023-2024九年级下学期月考数学试题(原卷版+解析版)

2024年来凤县实验中学九年级数学第一次月考试卷
一、选择题(共10小题)
1. 的绝对值是( )
A. 3 B. C. D.
【答案】A
【解析】
【分析】本题考查了绝对值的定义,根据绝对值的定义,数轴上的数离开原点之间的距离叫做这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即可得出结果.
【详解】解:,
的绝对值是3,
故选:A.
2. 全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是( )
A. B. C. D.
【答案】A
【解析】
【分析】本题考查用科学记数法,绝对值大于10的数用科学记数法表示一般形式为,n为整数位数减1,据此即可解答.
【详解】解:可表示为.
故选:A.
3. 下列运算结果正确的是(  )
A. B. C. D.
【答案】C
【解析】
【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.
【详解】解:A、,选项计算错误,不符合题意;
B、,选项计算错误,不符合题意;
C、,选项计算正确,符合题意;
D、,选项计算错误,不符合题意;
故选C.
【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.
4. 如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据左视图是从左面看到的视图,进行判断即可.
【详解】解:几何体的左视图为:
故选D.
【点睛】本题考查三视图,熟练掌握左视图是从左往右看到的图形,是解题的关键.
5. 将直角三角板和直尺按照如图位置摆放,若,则的度数是( ).
A. B. C. D.
【答案】A
【解析】
【分析】根据平行线的性质可得,进而根据三角形的外角的性质,即可求解.
【详解】解:如图所示,
∵直尺的两边平行,
∴,
又∵,
∴,
故选:A.
【点睛】本题考查了平行线的性质,三角形的外交的性质,熟练掌握三角形的外角的性质是解题的关键.
6. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为(   )
A. B. C. D.
【答案】B
【解析】
【分析】根据题意画树状图,再利用概率公式,即可得到答案.
【详解】解:根据题意,画树状图如下:
一共有12种情况,被抽到的2名同学都是男生的情况有6种,

故选:B.
【点睛】本题考查了列表法或画树状图法求概率,熟练掌握概率公式是解题关键.
7. 据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A. B.
C. D.
【答案】B
【解析】
【分析】设2020年至2022年全国居民人均可支配收入年平均增长率为x,根据题意列出一元二次方程即可.
【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,
根据题意得,.
故选:B.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
8. 若关于x的分式方程的解为非负数,则m的取值范围是( )
A. 且 B. 且 C. 且 D. 且
【答案】A
【解析】
【分析】把分式方程的解求出来,排除掉增根,根据方程的解是非负数列出不等式,最后求出m的范围.
【详解】解:方程两边都乘以,得:,
解得:,
∵,即:,
∴,
又∵分式方程的解为非负数,
∴,
∴,
∴的取值范围是且,
故选:A.
【点睛】本题考查了分式方程的解,根据条件列出不等式是解题的关键,分式方程一定要检验.
9. 甲乙两人骑自行车分别从,两地同时出发相向而行,甲匀速骑行到地,乙匀速骑行到地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离米和骑行的时间秒之间的函数关系图象如图所示,现给出下列结论:①;②;③甲的速度为米秒;④当甲、乙相距米时,甲出发了秒或秒.其中正确的结论有(  )
A. ①② B. ①③ C. ②④ D. ③④
【答案】C
【解析】
【分析】本题考查了函数图象;根据函数图象中的数据,可以计算出甲和乙的速度,从而可以判断③;然后根据甲的速度可以计算出的值,即可判断①;根据乙的速度,可以计算出的值,可以判断②;根据甲和乙相遇前和相遇后相距米,可以计算出甲出发的时间,即可判断④.
【详解】解:由图可得,
甲的速度为:(米秒),故③错误,不符合题意;
乙的速度为:米秒,
,故①错误,不符合题意;
,故②正确,符合题意;
设当甲、乙相距米时,甲出发了秒,
两人相遇前:,
解得;
两人相遇后:,
解得;故④正确,符合题意;
故选:C.
10. 折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是( )
A. B. 2 C. D. 4
【答案】B
【解析】
【分析】连接BM,利用折叠的性质证明四边形BMDN为菱形,设DN=NB=x,在RtABD中,由勾股定理求BD,在RtADN中,由勾股定理求x,利用菱形计算面积的两种方法,建立等式求MN.
【详解】解:如图,连接BM,
由折叠可知,MN垂直平分BD,
又AB∥CD,
∴BON≌DOM,
∴ON=OM,
∴四边形BMDN为菱形(对角线互相垂直平分的四边形是菱形),
设DN=NB=x,则AN=8﹣x,
在RtABD中,由勾股定理得:BD==,
在RtADN中,由勾股定理得:AD2+AN2=DN2,
即42+(8﹣x)2=x2,
解得x=5,
根据菱形计算面积的公式,得
BN×AD=×MN×BD,
即5×4=×MN×,
解得MN=.
故选:B.
【点睛】本题考查图形的翻折变换,勾股定理,菱形的面积公式的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.
二、填空题(共6小题)
11. 因式分解:__________.
【答案】a(a+1)2
【解析】
【分析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b)
【详解】:a3+2a2+a,
=a(a2+2a+1),
=a(a+1)2.
【点睛】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键
12. 若、是方程的两个根,则______.
【答案】
【解析】
【分析】本题考查了根与系数的关系,完全平方公式,代数式求值,熟练掌握一元二次方程根与系数的关系是解题的关键.根据根与系数的关系:,是一元二次方程的两根时,,,求解即可.
【详解】解:、是方程的两个根,
,,

故答案为:.
13. 综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为,尚美楼顶部F的俯角为,已知博雅楼高度为15米,则尚美楼高度为_____________米.(结果保留根号)
【答案】##
【解析】
【分析】过点E作于点M,过点F作于点N,首先证明出四边形是矩形,得到,然后根据等腰直角三角形的性质得到,进而得到,然后利用角直角三角形的性质和勾股定理求出,即可求解.
【详解】如图所示,过点E作于点M,过点F作于点N,
由题意可得,四边形是矩形,
∴,
∵,
∴,
∵博雅楼顶部E的俯角为,
∴,
∴,
∴,
∵点A是的中点,
∴,
由题意可得四边形是矩形,
∴,
∵尚美楼顶部F的俯角为,
∴,
∴,
∴,
∴在中,,
∴,
∴解得,
∴.
故答案为:.
【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
14. 如图,四边形是的内接四边形,是的直径,,则的度数是_________.
【答案】120
【解析】
【分析】解:如图,连接,由是的直径,可得,由,可得,,根据,计算求解即可.
【详解】解:如图,连接,
∵是的直径,
∴,
∵,
∴,
∴,
∵四边形是的内接四边形,
∴,
故答案为:120.
【点睛】本题考查了直径所对的圆周角为直角,含的直角三角形,圆内接四边形的性质.解题的关键在于明确角度之间的数量关系.
15. 如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.
【答案】57
【解析】
【分析】根据题意得出第n个图形中菱形的个数为;由此代入求得第⑦个图形中菱形的个数.
【详解】解:第①个图形中一共有3个菱形,;
第②个图形中共有7个菱形,;
第③个图形中共有13个菱形,;
…,
第n个图形中菱形的个数为:;
则第⑦个图形中菱形个数为.
故答案为:57.
【点睛】本题考查了整式加减的探究规律—图形类找规律,其关键是根据已知图形找出规律.
16. 如图,二次函数的函数图像经过点(1,2),且与轴交点的横坐标分别为、,其中 -1<<0,1<<2,下列结论:①;②;③;④当时,;⑤ ,其中正确的有 ___________.(填写正确的序号)
【答案】②④⑤
【解析】
【分析】根据二次函数的开口方向、对称轴、与x轴、y轴的交点坐标以及过特殊点时系数a、b、c满足的关系等知识进行综合判断即可.
【详解】解:抛物线开口向下,a<0,对称轴在y轴的右侧,a、b异号,因此b>0,与y轴的交点在正半轴,c>0,
所以abc<0,故①错误;
对称轴在0~1之间,于是有0<-<1,又a<0,所以2a+b<0,故②正确;
当x=-2时,y=4a-b+c<0,故③错误;
当x=m(1<m<2)时,y=am2+bm+c<2,所以am2+bm<2-c,故④正确;
当x=-1时,y=a-b+c<0,当x=1时,y=a+b+c=2,所以-2b<-2,即b>1,故⑤正确;
综上所述,正确的结论有:②④⑤,
故答案为:②④⑤.
【点睛】本题考查了二次函数的图象和性质,不等式的性质等知识,掌握抛物线的所处的位置与系数a、b、c满足的关系是正确判断的前提.
三、解答题(共8小题)
17. (1)计算:.
(2)先化简,再求值:,其中.
【答案】(1);(2);
【解析】
【分析】本题主要考查了分式的化简求值,实数的运算,掌握分式和实数的运算法则及特殊角的函数值是解决本题的关键.
(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.
(2)利用分式的运算法则先化简分式,再代入特殊角的函数值确定,最后利用二次根式的性质得结论.
【详解】(1)解:

(2)解:原式

当时,
原式.
18. 打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
【答案】(1)18,6,
(2)480人 (3)
【解析】
【分析】(1)根据选择“E:其他类”的人数及比例求出总人数,总人数乘以A占的比例即为m,总人数减去A,B,C ,E的人数即为n,360度乘以B占的比例即为文学类书籍对应扇形圆心角;
(2)利用样本估计总体思想求解;
(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.
【小问1详解】
解:参与调查的总人数为:(人),


文学类书籍对应扇形圆心角,
故答案为:18,6,;
小问2详解】
解:(人),
因此估计最喜欢阅读政史类书籍的学生人数为480人;
【小问3详解】
解:画树状图如下:
由图可知,共有9种等可能的情况,其中甲乙两位同学选择相同类别书籍的情况有2种,
因此甲乙两位同学选择相同类别书籍的概率为:.
【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理.
19. 已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0,
(1)求证:无论k为何值,原方程都有实数根;
(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k值及该菱形的面积.
【答案】(1)证明见解析;(2)k=2;菱形的面积是9.
【解析】
【分析】(1)首先计算根的判别式,再根据判别式的值判断方程根的情况;
(2)由根与系数关系及x1x2+2x1+2x2=36可以得到关于k的一元二次方程,解方程可以得到k的值,再根据菱形面积等于可以求得答案.
【详解】(1)证明:根据题意得:△=[﹣(3k+3)]2﹣4(2k2+4k+2)=(k+1)2.
∵无论k为何值,总有(k+1)2≥0,
∴无论k为何值,原方程都有实数根;
(2)∵关于x的方程x2﹣(3k+3)x+2k2+4k+2=0的两实数根是x1、x2,
∴x1+x2=3k+3,x1x2=2k2+4k+2,
∴由x1x2+2x1+2x2=36,得2k2+4k+2+2(3k+3)=36,
整理,得(k+7)(k﹣2)=0.
解得k1=﹣7(舍去),k2=2.
∴x1x2=×2(k+1)2=(2+1)2=9.
即菱形的面积是9.
【点睛】本题考查一元二次方程与菱形的综合应用,熟练求解根的判别式及利用根与系数关系求出k的值是解题关键.
20. 某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
(1)求A型,B型机器人模型的单价分别是多少元
(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少 最少花费是多少元
【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元
(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元
【解析】
【分析】(1)设A型编程机器人模型单价是元,B型编程机器人模型单价是元,根据:用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同即可列出关于x的分式方程,解方程并检验后即可求解;
(2)设购买A型编程机器人模型台,购买A型和B型编程机器人模型共花费元,根据题意可求出m的范围和W关于m的函数关系式,再结合一次函数的性质即可求出最小值
【小问1详解】
解:设A型编程机器人模型单价是元,B型编程机器人模型单价是元.
根据题意,得
解这个方程,得
经检验,是原方程的根.
答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元.
【小问2详解】
设购买A型编程机器人模型台,购买B型编程机器人模型台,购买A型和B型编程机器人模型共花费元,
由题意得:,解得.

即,
∵,
∴随的增大而增大.
∴当时,取得最小值11200,此时;
答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.
【点睛】本题考查了分式方程的应用、一元一次不等式的应用和一次函数的性质,正确理解题意、找准相等与不等关系、得出分式方程与不等式是解题的关键.
21. 如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m的值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
【答案】(1)
(2)或
【解析】
【分析】(1)先把点A坐标代入反比例函数解析式求出m的值,进而求出点A的坐标,再把点A和点C的坐标代入一次函数解析式中求出一次函数解析式即可;
(2)先求出,,过点A作轴于点H,过点P作轴于点D,如图所示,根据可得,求出,则点P的纵坐标为2或,由此即可得到答案.
【小问1详解】
解:点在反比例函数的图象上,



又点,都在一次函数的图象上,

解得,
一次函数的解析式为.
【小问2详解】
解:对于,当时,,
∴,

∵,
过点A作轴于点H,过点P作轴于点D,如图所示.



解得.
点P纵坐标为2或.
将代入得,
将代入得,
∴点或.
【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.
22. 如图,是的直径,点是圆上的一点,于点,交于点,连接,若平分,过点作于点,交于点,延长,交于点.
(1)求证:是的切线;
(2)求证:;
(3)若,求的值.
【答案】(1)证明,见解析
(2)证明,见解析 (3)
【解析】
【分析】(1)连接,根据平分,则,根据,得,根据平行线的判定和性质,即可;
(2)由(1)得,,根据,,相似三角形的判定和性质,即可;
(3)根据,则,设的半径为,则,根据勾股定理求出;根据,,根据勾股定理求出,再根据,在根据勾股定理求出,根据,即可.
【小问1详解】
连接
∵平分,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴是的切线.
【小问2详解】
证明,如下:
由(1)得,,
∵,
∵,
∴,
∴,
∵,
∴,
∴,
∴.
【小问3详解】
∵,
∴,
设的半径为,
∴,
∴,
∵,
∴,,
∵,
∴,
∵,
∴,
∵,
∴.
【点睛】本题考查圆,相似三角形,锐角三角形函数的知识,解题的关键圆的切线定理的运用,相似三角形的判定和性质,锐角三角形函数的运用.
23. 如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
(1)判断线段BD与CE的数量关系并给出证明;
(2)延长ED交直线BC于点F.
①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
【答案】(1),理由见解析
(2)①;②,理由见解析
【解析】
【分析】(1)利用等边三角形的性质和旋转的性质易得到,再由全等三角形的性质求解;
(2)①根据线段绕点A按逆时针方向旋转得到得到是等边三角形,
由等边三角形的性质和(1)的结论来求解;②过点A作于点G,连接AF,根据等边三角形的性质和锐角三角函数求值得到,,进而得到,进而求出,结合,ED=EC得到,再用等腰直角三角形的性质求解.
【小问1详解】
解:.
证明:∵是等边三角形,
∴,.
∵线段绕点A按逆时针方向旋转得到,
∴,,
∴,
∴,
即.
在和中

∴,
∴;
【小问2详解】
解:①
理由:∵线段绕点A按逆时针方向旋转得到,
∴是等边三角形,
∴,
由(1)得,
∴;
②过点A作于点G,连接AF,如下图.
∵是等边三角形,,
∴,
∴.
∵是等边三角形,点F为线段BC中点,
∴,,,
∴,
∴,,
∴,
即,
∴,
∴.
∵,,
∴,
即是等腰直角三角形,
∴.
【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键.
24. 如图,抛物线与x轴交于,两点,与轴交于点.
(1)求抛物线解析式及,两点坐标;
(2)以,,,为顶点四边形是平行四边形,求点坐标;
(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为,,
(2)或或
(3)
【解析】
【分析】(1)将点代入抛物线解析式,待定系数法求解析式,进而分别令,即可求得两点的坐标;
(2)分三种情况讨论,当,为对角线时,根据中点坐标即可求解;
(3)根据题意,作出图形,作交于点,为的中点,连接,则在上,根据等弧所对的圆周角相等,得出在上,进而勾股定理,根据建立方程,求得点的坐标,进而得出的解析式,即可求解.
【小问1详解】
解:∵抛物线与x轴交于,

解得:,
∴抛物线解析式为,
当时,,
∴,
当时,
解得:,

【小问2详解】
∵,,,
设,
∵以,,,为顶点的四边形是平行四边形
当为对角线时,
解得:,
∴;
当为对角线时,
解得:

当为对角线时,
解得:

综上所述,以,,,为顶点的四边形是平行四边形,或或
【小问3详解】
解:如图所示,作交于点,为的中点,连接,

∴是等腰直角三角形,
∴在上,
∵,,
∴,,
∵,
∴在上,
设,则
解得:(舍去)
∴点
设直线的解析式为

解得:.
∴直线的解析式
∵,,
∴抛物线对称轴为直线,
当时,,
∴.
【点睛】本题考查了二次函数的综合运用,待定系数法求解析式,平行四边形的性质,圆周角角定理,勾股定理,求一次函数解析式,熟练掌握以上知识是解题的关键.2024年来凤县实验中学九年级数学第一次月考试卷
一、选择题(共10小题)
1. 的绝对值是( )
A. 3 B. C. D.
2. 全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是( )
A. B. C. D.
3. 下列运算结果正确的是(  )
A. B. C. D.
4. 如图所示几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
A. B. C. D.
5. 将直角三角板和直尺按照如图位置摆放,若,则的度数是( ).
A. B. C. D.
6. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为(   )
A. B. C. D.
7. 据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A. B.
C. D.
8. 若关于x的分式方程的解为非负数,则m的取值范围是( )
A. 且 B. 且 C. 且 D. 且
9. 甲乙两人骑自行车分别从,两地同时出发相向而行,甲匀速骑行到地,乙匀速骑行到地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离米和骑行的时间秒之间的函数关系图象如图所示,现给出下列结论:①;②;③甲的速度为米秒;④当甲、乙相距米时,甲出发了秒或秒.其中正确的结论有(  )
A. ①② B. ①③ C. ②④ D. ③④
10. 折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是( )
A. B. 2 C. D. 4
二、填空题(共6小题)
11. 因式分解:__________.
12. 若、是方程的两个根,则______.
13. 综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为,尚美楼顶部F的俯角为,已知博雅楼高度为15米,则尚美楼高度为_____________米.(结果保留根号)
14. 如图,四边形是的内接四边形,是的直径,,则的度数是_________.
15. 如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.
16. 如图,二次函数的函数图像经过点(1,2),且与轴交点的横坐标分别为、,其中 -1<<0,1<<2,下列结论:①;②;③;④当时,;⑤ ,其中正确的有 ___________.(填写正确的序号)
三、解答题(共8小题)
17. (1)计算:.
(2)先化简,再求值:,其中.
18. 打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍概率.
19. 已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0,
(1)求证:无论k为何值,原方程都有实数根;
(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k值及该菱形的面积.
20. 某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
(1)求A型,B型机器人模型单价分别是多少元
(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少 最少花费是多少元
21. 如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m的值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
22. 如图,是的直径,点是圆上的一点,于点,交于点,连接,若平分,过点作于点,交于点,延长,交于点.
(1)求证:是的切线;
(2)求证:;
(3)若,求的值.
23. 如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
(1)判断线段BD与CE的数量关系并给出证明;
(2)延长ED交直线BC于点F.
①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
24 如图,抛物线与x轴交于,两点,与轴交于点.
(1)求抛物线解析式及,两点坐标;
(2)以,,,为顶点的四边形是平行四边形,求点坐标;
(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.

延伸阅读:

标签:

上一篇:2023年四川省眉山市仁寿县鳌峰初级中学中考数学三模模拟试题(6月份)(原卷版+解析版)

下一篇:云南省昭通市巧家县马树中学2023-2024年八年级下学期3月月考数学试题(含解析)