(新高考新结构)2024年高考数学模拟卷(三)(含解析)

2024年新高考新结构数学模拟卷(三)
(模拟测试)
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷草稿纸和答题卡上的非答题区域均无效.
4.考试结束后,请将本试卷和答题卡一并上交.
一、单选题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中, 只有一项是符合题目要求的)
1.已知集合,,则( )
A. B. C. D.
2.已知直线、、与平面、,下列命题正确的是( )
A.若,,,则 B.若,,则
C.若,,则 D.若,,则
3.已知非零向量,,满足,,若为在上的投影向量,则向量,夹角的余弦值为( )
A. B. C. D.
4.已知圆,圆,则两圆的公切线条数为( )
A.1 B.2 C.3 D.4
5.甲箱中有个红球,个白球和个黑球;乙箱中有个红球,个白球和个黑球.先从甲箱中随机取出一球放入乙箱中,分别以、、表示由甲箱中取出的是红球、白球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的事件,则下列结论错误的是( )
A. B.
C.事件与事件不相互独立 D.、、两两互斥
6.蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”. 画法如下:在水平直线上取长度为1的线段,作一个等边三角形,然后以点B为圆心,为半径逆时针画圆弧交线段的延长线于点D(第一段圆弧),再以点C为圆心,为半径逆时针画圆弧交线段的延长线于点E,再以点A为圆心,为半径逆时针画圆弧……以此类推,当得到的“蚊香”恰好有15段圆弧时,“蚊香”的长度为( )

A. B. C. D.
7.若,,,则a,b,c的大小关系为( )
A. B. C. D.
8.“曼哈顿距离”是十九世纪的赫尔曼 闵可夫斯基所创词汇,定义如下:在直角坐标平面上任意两点的曼哈顿距离为:.已知点在圆上,点在直线上,则的最小值为( )
A. B. C. D.
二、多选题(本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全部选对得 6 分,部分选对得部分分,有选错得 0 分)
9.一组数据满足,若去掉后组成一组新数据.则新数据与原数据相比( )
A.极差变小 B.平均数变大 C.方差变小 D.第25百分位数变小
10.如图所示,棱长为3的正方体中,为线段上的动点(不含端点),则下列结论正确的是( )
A. B.与所成的角可能是
C.是定值 D.当时,点到平面的距离为1
11.已知函数为定义在上的偶函数,,且,则( )
A. B.的图象关于点对称
C.以6为周期的函数 D.
三、填空题(本题共 3 小题,每小题 5 分,共 15 分)
12.的展开式中的系数为 .(用数字作答)
13.在四面体中,,若,则四面体体积的最大值是 ,它的外接球表面积的最小值为 .
14.已知为拋物线的焦点,过点的直线与拋物线交于不同的两点,,拋物线在点处的切线分别为和,若和交于点,则的最小值为 .
四、解答题(本题共 5 小题,共77分,其中 15 题 13 分,16 题 15 分,17 题 15 分,18 题 17 分,19 题 17 分,解答应写出文字说明、证明过程或演算步骤)
15.已知椭圆的左右顶点距离为,离心率为.
(1)求椭圆的标准方程;
(2)设过点,斜率存在且不为0的直线与椭圆交于,两点,求弦垂直平分线的纵截距的取值范围.
16.在中,角所对的边分别为.若.
(1)求;
(2)若为锐角三角形,求的取值范围.
17.最新研发的某产品每次试验结果为成功或不成功,且每次试验的成功概率为.现对该产品进行独立重复试验,若试验成功,则试验结束;若试验不成功,则继续试验,且最多试验8次.记为试验结束时所进行的试验次数,的数学期望为.
(1)证明:;
(2)某公司意向投资该产品,若,每次试验的成本为元,若试验成功则获利元,则该公司应如何决策投资?请说明理由.
18.已知函数且.
(1)设,讨论的单调性;
(2)若且存在三个零点.
1)求实数的取值范围;
2)设,求证:.
19.已知数列为有穷正整数数列.若数列A满足如下两个性质,则称数列A为m的k减数列:
①;
②对于,使得的正整数对有k个.
(1)写出所有4的1减数列;
(2)若存在m的6减数列,证明:;
(3)若存在2024的k减数列,求k的最大值.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.B
【分析】分别求解两个集合,再根据补集和并集的定义,即可求解.
【详解】,得,所以,
函数中,,即,所以,
,所以.
故选:B
2.D
【分析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项即可.
【详解】对于A,若,,,则与可能平行,也可能异面,故A错误;
对于B,若,,则与可能平行,也可能相交,故B错误;
对于C,若,,则与可能平行,也可能相交或异面,故C错误;
对于D,若,则由线面平行的性质定理可知,必有,使得,
又,则,因为,所以,故D正确.
故选:D.
3.B
【分析】根据题意,由平面向量的数量积运算,向量的投影向量的计算公式,结合其夹角公式代入计算,即可得到结果.
【详解】由,为在上的投影向量,
所以,故
故选:B
4.D
【分析】由两圆的位置关系即可确定公切线的条数.
【详解】由题意圆是以为圆心1为半径的圆;
即是以为圆心3为半径的圆;
圆心距满足,所以两圆相离,
所以两圆的公切线条数为4.
故选:D.
5.A
【分析】利用全概率公式可判断A选项;直接写出的值,可判断B选项;利用独立事件的定义可判断C选项;利用互斥事件的定义可判断D选项.
【详解】依题意,,,,
,,B对,
,A错;
,,
所以,,所以,事件与事件不相互独立,C对,
由题意可知,事件、、中的任意两个事件都不可能同时发生,
因此,事件、、两两互斥,D对.
故选:A.
6.D
【分析】利用扇形弧长公式及等差数列求和公式计算即可.
【详解】由题意每段圆弧的中心角都是,每段圆弧的半径依次增加1,
则第段圆弧的半径为,弧长记为,则,
所以.
故选:D.
7.A
【分析】由对数函数的性质可得,构造函数,利用导数可得,则答案可求.
【详解】因为,所以,所以,
令,所以,则,

所以,
即恒为递增函数,
则,即,所以,
综上:,
故选:A.
8.D
【分析】如图,作过点作平行于轴的直线交直线于点,过点作于点,结合直线的斜率得出平行于轴,最小,再设,求出,利用三角函数知识得最小值.
【详解】如图,过点作平行于轴的直线交直线于点,过点作于点表示的长度,因为直线的方程为,所以,即,
当固定点时,为定值,此时为零时,最小,即与重合(平行于轴)时,最小,如图所示,
设,,则,

由三角函数知识可知,其中,
则其最大值是,
所以,故D正确.
故选:D.

【点睛】关键点睛:本题的关键是理解曼哈顿距离的定义,得到,再利用辅助角公式即可求出其最值.
9.AC
【分析】根据极差,平均数,方差与百分位数的定义计算出去掉前后的相关数据,比较后得到答案.
【详解】由于,
故,,……,,,
A选项,原来的极差为,去掉后,极差为,极差变小,A正确;
B选项,原来的平均数为,
去掉后的平均数为,平均数不变,B错误;
C选项,原来的方差为,
去掉后的方差为,
方差变小,C正确;
D选项,,从小到大排列,选第3个数作为第25百分位数,即,
,故从小到大排列,选择第3个数作为第25百分位数,即,
由于,第25百分位数变大,D错误.
故选:AC
10.ACD
【分析】以为原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,设 ,,计算,可判断A;假设与所成的角是,则,求解可判断B;计算,可判断C;当时,,求出平面的法向量,利用点到平面的距离公式可判断D.
【详解】以为原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,则,,,,,,
设 ,,则,,
所以 ,则,故A正确;
因为,,
所以,
若与所成的角是,
则,即,
整理得,得,与矛盾,故B错误;
,,所以为定值,故C正确;
当时,,
,,,
设平面的法向量为,
由令,则,,,
点到平面的距离,故D正确.
故选:ACD.
11.ABC
【分析】令,求出可判断A;利用和得出可判断B正确;利用周期函数的定义和求出周期可判断C;赋值法求出,结合周期可判断D.
【详解】因为函数为定义在上的偶函数,
所以,,
对于A,令,可得,
因为,可得,故A正确;
对于B,因为,
所以,
可得,
从而,
又因为,可得,
所以,可得,
所以的图象关于点对称,故B正确;
对于C,因为,
所以,所以,
可得,所以有,
所以以6为周期的函数,故C正确;
对于D,,,令可得,可得,
令可得,可得,
令可得,可得,
令可得,可得,所以,
所以,故D错误.
故选:ABC.
【点睛】关键点点睛:适当的赋值和变量代换,是探求抽象函数周期的关键,求解抽象函数问题,要有扎实的基础知识和较强的抽象思维和逻辑推理能力.
12.
【分析】由二项式定理得到的通项公式,结合,得到,得到的系数.
【详解】的通项公式为,
令得,,此时,
令得,,此时,
故的系数为
故答案为:
13.
【分析】根据余弦定理以及不等式可得,进而可求解面积的最大值,进而根据,即可求解高的最大值,进而可求解体积,根据正弦定理求解外接圆半径,即可根据球的性质求解球半径的最小值,即可由表面积公式求解.
【详解】由余弦定理可得,
故,所以,
当且仅当时取等号,故,
故面积的最大值为,

由于,所以点在以为直径的球上(不包括平面),故当平面平面时,此时最大为半径,
故,
由正弦定理可得:,为外接圆的半径,
设四面体外接球半径为,则,其中分别为球心和外接圆的圆心,故当时,此时最小,
故外接球的表面积为,
故答案为:,
14.10
【分析】设直线方程为,,联立抛物线方程得出韦达定理,再利用导数的几何意义求解方程,联立可得,再代入根据基本不等式求解最小值即可.
【详解】的焦点为,设直线方程为,.
联立直线与抛物线方程有,则.
又求导可得,故直线方程为.
又,故,同理.
联立可得,解得,代入可得,代入韦达定理可得,故.
故,当且仅当,即时取等号.
故答案为:10
【点睛】方法点睛:如图,假设抛物线方程为, 过抛物线准线上一点向抛物线引两条切线,切点分别记为,其坐标为. 则以点和两切点围成的三角形中,有如下的常见结论:
结论1.直线过抛物线的焦点.
结论2.直线的方程为.
结论3.过的直线与抛物线交于两点,以分别为切点做两条切线,则这两条切线的交点的轨迹即为抛物线的准线.
结论4..
结论5..
结论6.直线的中点为,则平行于抛物线的对称轴.
结论7..
15.(1)
(2)
【分析】(1)根据长轴长与椭圆的离心率求得,进而得到椭圆标准方程;
(2)设与椭圆方程联立后,得到韦达定理的形式,利用中点坐标公式表示出点坐标,从而得到方程;令可求得在轴的截距,利用函数值域的求解方法可求得结果.
【详解】(1)由题意,,即,
又,所以,
故,
故所求椭圆的标准方程为.
(2)如图,
由题意知:直线的斜率存在且不为零,
设,,,,中点,
联立,消去并整理得:,
恒成立,
则,,,

则方程为:,即,
化简得:
设直线在轴上截距为,令得,
由可知,
所以直线在轴上的截距的取值范围为.
16.(1);
(2).
【分析】(1)利用边化角及三角恒等变换公式整理计算即可;
(2)通过角的转化,借助三角恒等变换公式,得到,利用
的范围,即可求出结果.
【详解】(1)因为,整理得

所以,
由正弦定理得:,
因为,所以,所以.
(2)因为为锐角三角形,,所以,且,
所以,
解法

因为,所以,
所以,
即的取值范围是.
解法

因为,所以,得,
所以,
即的取值范围是.
17.(1)证明见解析;
(2)应该投资,理由见解析
【分析】(1)由题意,,,列出分布列,列出,乘公比错位相减法求和,分析可证明;
(2)由(1)可得,分析即得解
【详解】(1)由题意,

分布列如下:
1 2 3 4 5 6 7 8
所以的数学期望,
记,

作差可得,,
则;
(2)由(1)可知,则试验成本的期望小于元,
试验成功则获利元,且,则该公司应该投资该产品
18.(1)答案见解析
(2)1);2)证明见解析
【分析】(1)先求的导函数,再分类讨论即可.
(2)1)根据存在三个零点,转化为两个函数有三个交点,再根据最值可求.
2)根据三个零点所在区间,把要证明的式子分解为三个部分,分别求解后可得.
【详解】(1),,
因为,定义域为
当时,,解,得,解,得
当时,,解,得,解,得
综上, 当时, 增区间为,减区间为,
当时, 增区间为,减区间为,
(2)1)因为且存在三个零点.
所以有3个根
当时, ,
在上是单调递增的,由零点存在定理,方程必有一个负根.
当,,即有两个根,
令,可转化为与有两个交点
,
可得,,是单调递增的, 可得,,是单调递减的,
其中,当,
所以可得,
即得.
2)因为且存在三个零点.
设,,易知其中 ,,
因为,所以,故可知;①
由1)可知与有两个交点,
,是单调递增的, ,,,所以;②
,
若,则
若,
构造函数,
设,
因为
又因为,
所以③
因为
又因为
所以
即得④
由③④可知, ,在上单调递增, 可得
,可知与同号
所以,
在上单调递增.
,,又由1)可知
所以,
,,是单调递增的,
所以⑤
由①②⑤可知
【点睛】本题考查利用导数证明不等式,解决问题的关键点是极值点偏移问题,
证明的方法总结:先构造,再确定的单调性,
结合特殊值得到再利用单调性可得.
19.(1)数列和数列3,1
(2)证明见解析
(3)的最大值为512072
【分析】(1)根据k减数列的定义,即可写出答案;
(2)根据存在的6减数列,可得,即,继而分类讨论n的取值,说明每种情况下都有,即可证明结论;
(3)分类讨论数列中的项的情况,结合题意确定数列为的形式,从而结合设其中有项为2,有项为1,进行求解,即可得答案.
【详解】(1)由题意得,则或,
故所有4的1减数列有数列和数列3,1.
(2)因为对于,使得的正整数对有个,
且存在的6减数列,所以,得.
①当时,因为存在的6减数列,
所以数列中各项均不相同,所以.
②当时,因为存在的6减数列,
所以数列各项中必有不同的项,所以.
若,满足要求的数列中有四项为1,一项为2,
所以,不符合题意,所以.
③当时,因为存在的6减数列,
所以数列各项中必有不同的项,所以.
综上所述,若存在的6减数列,则.
(3)若数列中的每一项都相等,则,
若,所以数列存在大于1的项,
若末项,将拆分成个1后变大,
所以此时不是最大值,所以.
当时,若,交换的顺序后变为,
所以此时不是最大值,所以.
若,所以,
所以将改为,并在数列末尾添加一项1,所以变大,
所以此时不是最大值,所以.
若数列A中存在相邻的两项,设此时中有项为2,
将改为2,并在数列末尾添加项1后,的值至少变为,
所以此时不是最大值,
所以数列的各项只能为2或1,所以数列为的形式.
设其中有项为2,有项为1,
因为存在2024的减数列,所以,
所以,
所以,当且仅当时,取最大值为512072.
所以,若存在2024的减数列,的最大值为512072.
【点睛】难点点睛:本题考查数列新定义问题,解答时要理解新定义的含义,并由此依据定义去解答问题,难点在于第3问中求参数的最大值问题,要分类讨论,确定数列为的形式,从而结合设其中有项为2,有项为1,进行求解.
答案第1页,共2页
答案第1页,共2页

延伸阅读:

标签:

上一篇:2023-2024人教PEP版英语三年级下册期末试题试题(含答案及听力原文 无听力音频)

下一篇:2023-2024人教PEP版英语三年级下册期末达标测评卷四(含答案)