2023-2024学年北京市东城区六年级(上)期末数学试卷
一、计算下面各题。
1.计算。
= = =
= = =
= = =
=
二、填空。
2.时= 分
15平方分米=平方米
3. ÷15=0.6==12: = %
4.教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》中,明确提出要定期开展视力监测。绿荫小学进行了六年级学生视力监测,情况如下。
绿荫小学六年级学生视力监测情况统计表
班级 监测人数 视力合格人数 合格率
六年级1班 38 30 78.9%
六年级2班 36 27
六年级3班 35 27 77.1%
六年级2班的合格率是 %,这次视力监测中合格率最高的是六年级 班。
5.小明将一个圆形的纸卡片沿直尺的边滚动了一周(如图),这个圆的直径大约是 cm。(结果保留整厘米数)
6.包装一批产品,张阿姨单独完成需要20分钟,王阿姨单独完成需要30分钟。如果两人合作, 分钟能全部完成。
7.鹅的孵化期是30天,鸡的孵化期是鹅的,家鸽的孵化期是鸡的,家鸽的孵化期是 天。
8.一个篮球84元,一个排球的价钱是一个篮球的,一个足球的价钱比一个排球便宜,一个足球 元。
9.观察下面三幅点阵图,按照这样的规律,第10幅图中有 个点,第n幅图中有 个点。
10.手工组要做一些小红花,周一完成了全部的,周二做了150朵,这时没做完的与做完的朵数比是1:5,手工组一共要做 朵小红花。
11.某社区倡导居民安装“全民反诈”APP,为了了解社区居民“防诈骗意识”的情况,对社区居民进行了问卷调查。请你根据下面统计图中的信息填空。
这次调查“防诈骗意识”很强与“防诈骗意识”强的人数比是1:3,调查结果中“防诈骗意识”很强的有 人,“防诈骗意识”强的有 人。
三、选择。(把正确选项对应的“[]”涂满涂黑)
12.如果A:B=,那么(A×6):(B×6)=( )
A.1 B. C.1:1 D.无法确定
13.下面的几幅图中,不能用来表示的是图( )
A. B.
C. D.
14.下面图形中,图( )中的角是圆心角。
A. B.
C. D.
15.下面的几个图形中,对称轴最多的是( )
A. B.
C. D.
16.六年级(1)班同学分成四个组玩投沙包游戏,四个组一共得了60分。各组得分情况如下表:
第一组 第二组 第三组 第四组
9分 30分 15分 6分
下面四幅图中,能够准确表示四个组得分情况的是图( )
A. B. C. D.
17.如图是一个正方体的展开图,这个正方体相对两个面上的数互为倒数,那么ab两数的乘积是( )
A. B. C. D.
18.一种农产品,6月份的价格比5月份降了30%,下半年农产品价格调整,7月份的价格比6月份又涨了30%。这种农产品7月份的价格与5月份相比( )
A.价格没有变化
B.价格低了
C.价格高了
D.无法确定价格是否变化
四、脱式计算下面各题。
19.脱式计算下面各题。
(1)
(2)
(3)
(4)
五、按要求完成下面各题。
20.
(1)邮局在地铁站的南偏东30°方向600m处,在图中标出邮局的位置。
(2)小明的爸爸每天从家出发,先沿 偏 45°方向步行 m到达共享单车停靠点,再从共享单车停靠点沿 偏 30°方向骑行 m到达地铁站。
六、解决问题。
21.《考工记》中记载了我国古代创制的六种铜锡比例不同的合金成分配比,称之为“六齐”,是中国也是世界上最早的合金配制记载。其中记载制作钟鼎所用的铜和锡的质量之比为5:1,一位工艺大师按照这种方法制作了一个质量为180千克的鼎,这个鼎含铜和锡各多少千克?
22.李叔叔把一个直径4厘米的圆形铁片加工成一个环形垫片(如图),这个环形垫片的面积是多少平方厘米?
23.历史社团为了向同学们介绍二十四史,制作了很多图书简介卡。下面是一位同学制作的关于《三国志》的简介卡。
《三国志》简介《三国志》,二十四史之一,是我国史学上第一部纪传体断代国别史,由西晋史学家陈寿所著。通过记载魏、蜀、吴三国鼎立时期的历史,来反映东汉末至晋初整个中国社会的全貌。《三国志》全书共65卷,《魏书》 卷,《蜀书》 卷,《吴书》 卷。①《魏书》卷数是全书卷数的;②《蜀书》的卷数是《魏书》的50%。
把《三国志》简介卡_____中的信息补充完整,并把计算的过程写在下面。
24.小芳家的客厅里挂了一幅正方形的十字绣作品(如图)圆形绣花部分的直径是1米,这幅十字绣空白部分的面积是多少平方米?
25.截至2016年底,中国高速铁路营业总里程已达2.5万千米,2016年底的营业总里程是2019年底的,截至2022年底中国高速铁路营业总里程比2019年底又增加了20%,稳居世界第一。截至2022年底中国高速铁路营业总里程已达多少万千米?
26.2023年9月21日下午,面向全国青少年的中国空间站天宫课堂第四课在梦天实验舱开课,这次授课呈现了四个实验。小刚对同学们最感兴趣的实验情况进行了调查,并将部分调查结果记录在了下面的统计图表中。
学生对四个实验最感兴趣情况统计表
实验 感兴趣人数
A(球型火焰实验) 24
B(奇妙“乒乓球”实验) 42
C(动量守恒实验)
D(又见陀螺实验)
学生对四个实验最感兴趣情况统计图
根据上面统计图表的信息完成下面各题。
①把不完整的统计表和统计图补充完整,并在下面写出思考过程。
②先把下面的问题补充完整,再解答出来。对 实验最感兴趣的学生人数比对 实验最感兴趣的学生人数多百分之几?
2023-2024学年北京市东城区六年级(上)期末数学试卷
参考答案与试题解析
一、计算下面各题。
1.【分析】根据分数乘除法以及四则混合运算的顺序,直接进行口算即可。
【解答】解:
= = =
=25 = =
=8 = =1
=0
【点评】本题考查了简单的计算,计算时要细心,注意平时积累经验,提高计算的水平。
二、填空。
2.【分析】把时换算成用分作单位的数,用乘进率60;
把15平方分米换算成用平方米作单位的数,用15除以进率100,化简即可。
【解答】解:时=24分
15平方分米=平方米
故答案为:24;。
【点评】此题考查名数的换算,高级单位换算成低级单位要乘它们之间的进率;低级单位换算成高级单位要除以它们之间的进率。
3.【分析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘3就是9÷15;根据比与分数的关系=3:5,再根据比的性质比的前、后项都乘4就是12:20;把0.6的小数点向右移动两位添上百分号就是60%。
【解答】解:9÷12=0.6==12:20=60%
故答案为:9;(答案不唯一);20,60。
【点评】此题主要是考查小数、分数、除法、比、百分数之间的关系及转化。利用它们之间的关系和性质进行转化即可。
4.【分析】合格率是指合格的学生数占全部学生数的百分之几,计算方法为:合格率=合格的人数÷总人数×100%,由此分别求出三个班级的合格率,进而比较即可。
【解答】解:27÷36×100%=75%
78.9%>75%>77.1%
最高的是1班。
答:六年级2班的合格率是75%,这次视力监测中合格率最高的是六年级1班。
故答案为:75,1。
【点评】此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘百分之百。
5.【分析】依据题意结合图示可知,圆的周长大约是9.4厘米,圆的周长=π×直径,由此估算圆的直径。
【解答】解:直径为:9.4÷3.14≈3(厘米)
答:这个圆的直径大约是3cm。
故答案为:3。
【点评】本题考查的是圆的周长公式的应用。
6.【分析】把这批产品的工作量看作单位“1”,那么根据工作效率=工作量÷工作时间,张阿姨的工作效率是,李阿姨的工作效率是,再根据工作时间=工作量÷工作效率和,据此解答。
【解答】解:1÷(+)
=1÷
=12(分钟)
答:如果两人合作,12分钟能全部完成。
故答案为:12。
【点评】本题考查的是工程问题,掌握工作效率=工作量÷工作时间,工作时间=工作量÷工作效率和是解答关键。
7.【分析】先把鹅的孵化期看作单位“1”,根据一个数乘以分数的意义,用30乘求出鸡的孵化期是多少天,再把鸡的孵化期看作单位“1”,根据一个数乘以分数的意义,用鸡的孵化期乘,即可求出家鸽的孵化期是多少天。
【解答】解:30××
=21×
=14(天)
答:家鸽的孵化期是14天。
故答案为:14。
【点评】这种类型的题目属于基本的分数乘法应用题,只要找清单位“1”,利用基本数量关系解决问题。
8.【分析】根据求一个数的几分之几是多少,用乘法计算,先求出一个排球的价钱,然后把排球的价钱看作单位“1”,一个足球的价钱是一个排球价钱的(1﹣),再根据分数乘法的意义求出一个足球的价钱即可。
【解答】解:84××(1﹣)
=72×
=60(元)
答:一个足球60元。
故答案为:60。
【点评】本题主要考查分数乘法的计算及应用,找准单位“1”是关键。
9.【分析】第1幅图有(1+2+3)个点,第2幅图有(2+3+4)个点……第n幅图有(n+n+1+n+2=3n+3)个点。照此规律解答。
【解答】解:规律是:第1幅图有(1+2+3)个点,第2幅图有(2+3+4)个点……第n幅图有(n+n+1+n+2=3n+3)个点。
当n=10时,3n+3=3×10+3=33(个)。
答:第10幅图中有33个点,第n幅图中有(3n+3)个点。
故答案为:33,(3n+3)。
【点评】仔细观察,找到规律是解决本题的关键。
10.【分析】把一共要做小红花朵数看作单位“1”,周一完成了全部的,周二做了150朵,这时完成了全部的,则150朵占全部的(﹣)。根据分数除法的意义,用150朵除以(﹣)就是一共要做小红花的朵数。
【解答】解:150÷(﹣)
=150÷(﹣)
=150÷
=300(朵)
答:手工组一共要做300朵小红花。
故答案为:300。
【点评】此题考查了比的应用。关键是把比转化成分数,进而求出第二周做朵数占全部的几分之几,再根据分数除法的意义解答。
11.【分析】根据图表可以看出“防诈骗意识”一般的人数是20人,占总人数的20%,用除法计算即可求出总人数,再算出“防诈骗意识”很强和强的人数和,最后根据按比例分配即可解答。
【解答】解:20÷20%=100(人)
100﹣20﹣17﹣15=48(人)
(人)
(人)
调查结果中“防诈骗意识”很强的有12人,“防诈骗意识”强的有36人。
故答案为:12;36。
【点评】熟练掌握已知一个数的百分之几是多少求这个数用除法计算以及按比例分配解决问题是解答本题的关键。
三、选择。(把正确选项对应的“[]”涂满涂黑)
12.【分析】比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【解答】解:A:B=,那么(A×6):(B×6)=。
故选:B。
【点评】熟练掌握比的基本性质是解题的关键。
13.【分析】算式表示先将单位“1”先平均分成2份,取其中的1份;再将这1份平均分成4份,取其中的1份,据此解答。
【解答】解:选项A,将大正方形先平均分成2份,取其中的1份;再将这1份平均分成4份,取其中的1份,可以用算式表示;
选项B,将圆先平均分成2份,取其中的1份;再将这1份平均分成4份,取其中的1份,可以用算式表示;
选项C,将大长方形先平均分成2份,取其中的1份;再将这1份平均分成3份,取其中的1份,可以用算式表示;
选项D,将大三角形先平均分成2份,取其中的1份;再将这1份平均分成4份,取其中的1份,可以用算式表示。
故选:C。
【点评】本题考查了结合图形进行分数乘法运算,突出了对算理的理解。
14.【分析】根据圆心角的含义:顶点在圆心上,且角的两个端点在圆上的角叫做圆心角;据此解答即可。
【解答】解:根据圆心角的含义可知:在所给的四个选项中,中的角是圆心角。
故选:B。
【点评】此题主要考查了圆心角的含义,注意基础知识的积累。
15.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是这个图形的对称轴;据此即可进行解答。
【解答】解:上面的几个图形中,对称轴最多的是,有无数条对称轴。
故选:B。
【点评】此题主要考查轴对称图形意义的灵活运用。
16.【分析】小组得分占总得分的百分之几=小组得分÷总得分×100%,由此计算出各个小组得分占总得分的百分之几,由此解答本题。
【解答】解:第一组得分占总得分的:9÷60×100%=15%
第二组得分占总得分的:30÷60×100%=50%
第三组得分占总得分的:15÷60×100%=25%
第四组得分占总得分的:6÷60×100%=10%
故选:D。
【点评】本题考查的是扇形统计图的应用。
17.【分析】此图属于正方体展开图的“1﹣3﹣2”型,折成正方体后,a与3相对,b与1相对。由于这个正方体相对两个面上的数互为倒数,根据倒数的意义,乘积为1的两个数互为倒数,据此即可分别求出a、b两数,进而求出ab两数的乘积。
【解答】解:如图:
折成正方体后,a与3相对,b与1相对。
(1÷3)×(1÷1)
=×1
=
答:ab两数的乘积是。
故选:C。
【点评】关键是根据正方体展开图的特征及倒数的意义,分别求出a、b两数。求一个数的倒数是多少,用1除以这个数。
18.【分析】把5月份的价格看作单位“1”,那么6月的价格是5月的(1﹣30%),再把6月份的价格看作单位“1”,则7月的价格是6月的(1+30%),那么7月的价格是5月的价格(1﹣30%)×(1+30%),然后再比较上涨了还是下降了以及变化幅度即可。
【解答】解:(1﹣30%)×(1+30%)
=70%×130%
=91%
91%<1,所以价格下降了。
答:这种农产品7月份的价格与5月份相比,价格低了。
故选:B。
【点评】本题关键是区别两个单位“1”的不同,然后根据分数乘法的意义解答即可。
四、脱式计算下面各题。
19.【分析】(1)先算乘法,再算加法。
(2)运用乘法分配律进行简算。
(3)从左向右依次计算。
(4)先算小括号里的减法,再算括号外的乘法、除法。
【解答】解:(1)
=
=
(2)()×24
=
=18﹣10
=8
(3)
=
=
(4)
=
=
=
【点评】解答此题的关键是掌握混合运算顺序,结合数字特征能运用乘法定律简算的要简算。
五、按要求完成下面各题。
20.【分析】由图可知,图上1厘米代表实际距离200米,由此计算出邮局与地铁站的图上距离,地铁站到共享单车停靠点的实际距离,共享单车停靠点到小明家的实际距离,利用平面图上方向规定:上北下南左西右东,依据题意结合图示去解答。
【解答】解:由图可知,图上1厘米代表实际距离200米,则邮局与地铁站的图上距离:600÷200=3(厘米),地铁站到共享单车停靠点的实际距离:200×5=1000(米),共享单车停靠点到小明家的实际距离:2×200=400(米)。
(1)
(2)小明的爸爸每天从家出发,先沿东偏南45°方向步行400米到达共享单车停靠点,再从共享单车停靠点沿东偏北30°方向骑行1000米到达地铁站。
故答案为:东;南;400;东;北;1000。
【点评】本题考查的是根据方向和距离确定物体位置的应用。
六、解决问题。
21.【分析】把180千克平均分成(5+1)份,先用除法求出1份的质量,即含锡的质量;再用1份的质量乘5就是含铜的质量。
【解答】解:180÷(5+1)
=180÷6
=30(千克)
30÷5=150(千克)
答:这个鼎含铜150千克,含锡30千克。
【点评】此题考查了比的应用。除按上述解答方法外,也可分别求出铜、锡所占的分率,根据分数乘法的意义解答。
22.【分析】根据环形面积公式:S=π(R2﹣r2),把数据代入公式解答。
【解答】解:3.14×[(4÷2)2﹣(2÷2)2]
=3.14×[4﹣1]
=3.14×3
=9.42(平方厘米)
答:这个环形垫片的面积是9.42平方厘米。
【点评】此题主要考查环形面积公式的灵活运用,关键是熟记公式。
23.【分析】根据题意,《三国志》全书共65卷,《魏书》卷数是全书卷数的,所以《魏书》卷数=全书卷数×,代入数据计算即可。《蜀书》的卷数是《魏书》的50%,即《蜀书》的卷数=《魏书》卷数×50%,代入数据计算即可,据此解答。
【解答】解:(卷)
30×50%=15(卷)
65﹣30﹣15=20(卷)
答:《魏书》30卷,《蜀书》15卷,《吴书》20卷。
故答案为:30;15;20。
【点评】本题考查了分数和百分数的应用,解决本题的关键是用分数、百分数的乘法求出《魏书》、《蜀书》数量。
24.【分析】空白部分的面积等于正方形的面积减去圆的面积,根据正方形的面积公式:S=a2,圆的面积公式:S=πr2,把数据代入公式解答。
【解答】解:1×1﹣3.14×(1÷2)2
=1﹣3.14×0.25
=1﹣0.785
=0.215(平方米)
答:这幅十字绣空白部分的面积是0.215平方米。
【点评】此题主要考查正方形的面积公式、圆的面积公式的灵活运用,关键是熟记公式。
25.【分析】根据题意,截至2016年底,中国高速铁路营业总里程已达2.5万千米,因为2016年底的营业总里程=截至2019年底的营业总里程×,所以截至2019年底的营业总里程=截至2016年底的营业总里程÷,因为截至2022年底中国高速铁路营业总里程比2019年底又增加了20%,即截至2022年底中国高速铁路营业总里程=截至2019年底的营业总里程×(1+20%),据此解答。
【解答】解:
=
=4.2(万千米)
答:截至2022年底中国高速铁路营业总里程已达4.2万千米。
【点评】本题考查了分数、百分数的复合应用题,解决本题的关键是求出2019年底中国高速铁路营业总里程。
26.【分析】①A实验感兴趣人数=总人数×20%,用除法列式计算总人数,然后计算D实验人数=总人数×30%,B实验人数占总人数的百分之几=B实验人数÷总人数×100%,C实验人数占总人数的百分之几=1﹣A实验人数占总人数的百分之几﹣B实验人数占总人数的百分之几﹣D实验人数占总人数的百分之几,由此计算C实验人数,完成统计表和统计图;
②可以提问:B实验最感兴趣的学生人数比对A实验最感兴趣的学生人数多百分之几?B实验最感兴趣的学生人数比对A实验最感兴趣的学生人数多百分之几=(B实验最感兴趣的学生人数﹣对A实验最感兴趣的学生人数)÷对A实验最感兴趣的学生人数×100%,由此列式计算。(答案不唯一)
【解答】解:①24÷20%=120(人)
120×30%=36(人)
42÷120×100%=35%
1﹣20%﹣30%﹣35%=15%
120×15%=18(人)
学生对四个实验最感兴趣情况统计表
实验 感兴趣人数
A(球型火焰实验) 24
B(奇妙“乒乓球”实验) 42
C(动量守恒实验) 18
D(又见陀螺实验) 36
学生对四个实验最感兴趣情况统计图
A实验感兴趣人数=总人数×20%,用除法列式计算总人数,然后计算D实验人数=总人数×30%,B实验人数占总人数的百分之几=B实验人数÷总人数×100%,C实验人数占总人数的百分之几=1﹣A实验人数占总人数的百分之几﹣B实验人数占总人数的百分之几﹣D实验人数占总人数的百分之几,由此计算C实验人数。
②可以提问:B实验最感兴趣的学生人数比对A实验最感兴趣的学生人数多百分之几?(答案不唯一)
(42﹣24)÷24×100%
=18÷24×100%
=75%
答:B实验最感兴趣的学生人数比对A实验最感兴趣的学生人数多75%。
故答案为:B;A。
【点评】本题考查的是统计图表的应用。