人教版2023-2024度上学期九年级期末模拟数学试题3(含解析)


人教版2023-2024九年级上期末模拟试题3
考试范围:九上-九下第一章
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
下列图形中,既是轴对称图形又是中心对称图形的有(  )
A.1个 B.2个 C.3个 D.4个
关于x的方程有两个实数根,,且,那么m的值为( )
A. B. C.或1 D.或4
一次函数与反比例函数在同一坐标系中的图象可能是( )
A.B.C. D.
某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5 B.6 C.7 D.8
已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )
A.或2 B. C.2 D.
如图,在平面直角坐标系中,O是菱形对角线的中点,轴且,,将菱形绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是( )
A. B. C. D.或
已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是(  )
A. B. C. D.
如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是(  )
A.40° B.50° C.60° D.70°
已知抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),且对称轴在y轴的左侧,则下列结论错误的是(  )
A.a>0 B.a+b=3 C.抛物线经过点(﹣1,0)
D.关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根
在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是(  )
A.6 B.7 C.8 D.9
如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为(  )
A. B. C. D.
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是(  )
A.4个 B.3个 C.2个 D.1个
2 、填空题(本大题共6小题,每小题4分,共24分)
如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为  .
在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.
现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是   .
已知反比例函数y=的图象经过点A(1,﹣2),则k=      .
已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=   .
一个等边三角形绕其旋转中心至少旋转_________度,才能与自身重合.
3 、解答题(本大题共8小题,共78分)
(1)解方程:;(2)计算:.
如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.
如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).
(1)画出线段AB向右平移4个单位后的线段A1B1;
(2)画出线段AB绕原点O旋转180°后的线段A2B2.
为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:
(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;
(2)请你将条形统计图补全;
(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?
(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A.B在函数y=(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.
①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.
如图1,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF,连接EF.
试证明:AB=DB+AF.
【类比探究】
(1)如图2,如果点E在线段AB的延长线上,其它条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由.
(2)如果点E在线段BA的延长线上,其它条件不变,请在图3的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.
答案解析
1 、选择题
【考点】轴对称图形,中心对称图形
【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
解:第一个图是轴对称图形,又是中心对称图形;
第二个图是轴对称图形,不是中心对称图形;
第三个图是轴对称图形,又是中心对称图形;
第四个图是轴对称图形,不是中心对称图形;
既是轴对称图形,又是中心对称图形的有2个.
故选B.
【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.
【考点】根的判别式,根与系数的关系
【分析】通过根与系数之间的关系得到,,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值.
解:∵方程有两个实数根,,
∴,

∵,
∴,
整理得,,
解得,,,
若使有实数根,则,
解得,,
所以,
故选:A.
【点评】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.
【考点】一次函数图像的性质,反比例函数图像的性质
【分析】根据一次函数与反比例函数图象的性质进行判断即可得解.
解:当时,,则一次函数经过一、三、四象限,反比例函数经过一 、三象限,故排除A,C选项;
当时,,则一次函数经过一、二、四象限,反比例函数经过二、四象限,故排除B选项,
故选:D.
【点评】本题主要考查了一次函数与反比例函数图像的性质,熟练掌握相关性质与函数图像的关系是解决本题的关键.
【考点】一元二次方程的应用
【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可.
解:设有x个班级参加比赛,


解得:(舍),
则共有6个班级参加比赛,
故选:B.
【点评】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系.
【考点】二次函数图象与几何变换
【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.
解:函数向右平移3个单位,得:;
再向上平移1个单位,得:+1,
∵得到的抛物线正好经过坐标原点
∴+1即
解得:或
∵抛物线的对称轴在轴右侧
∴>0
∴<0

故选:B.
【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.
【考点】菱形的性质,旋转的性质
【分析】分点C旋转到y轴正半轴和y轴负半轴两种情况分别讨论,结合菱形的性质求解.
解:根据菱形的对称性可得:当点D在x轴上时,
A.B、C均在坐标轴上,如图,
∵∠BAD=60°,AD=4,
∴∠OAD=30°,
∴OD=2,
∴AO==OC,
∴点C的坐标为(0,),
同理:当点C旋转到y轴正半轴时,
点C的坐标为(0,),
∴点C的坐标为(0,)或(0,),
故选D.
【点评】本题考查了菱形的对称性,旋转的性质,直角三角形的性质,解题的关键是要分情况讨论.
【考点】反比例函数的应用.
【分析】根据题意得到电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),于是得到结论.
解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),R、I均大于0,
∴反映电流I与电阻R之间函数关系的图象大致是D选项,
故选:D.
【点评】本题考查反比例函数的应用,解题的关键是学会利用图象信息解决问题,属于中考常考题型.
【考点】圆心角、弧、弦的关系,圆周角定理
【分析】根据圆周角定理即可求出答案.
解:∵=,∠AOB=40°,
∴∠COD=∠AOB=40°,
∵∠AOB+∠BOC+∠COD=180°,
∴∠BOC=100°,
∴∠BPC=∠BOC=50°,
故选:B.
【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点,根的判别式.
【分析】根据题意做出抛物线y=ax2+bx+c的示意图,根据图象的性质做出解答即可.
解:由题意作图如下:
由图知,a>0,
故A选项说法正确,不符合题意,
∵抛物线y=ax2+bx+c经过点(1,0)和点(0,﹣3),
∴a+b+c=0,c=﹣3,
∴a+b=3,
故B选项说法正确,不符合题意,
∵对称轴在y轴的左侧,
∴抛物线不经过(﹣1,0),
故C选项说法错误,符合题意,
由图知,抛物线y=ax2+bx+c与直线y=﹣1有两个交点,故关于x的一元二次方程ax2+bx+c=﹣1有两个不相等的实数根,
故D选项说法正确,不符合题意,
故选:C.
【点评】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
【考点】概率公式
【分析】根据概率公式得到=,然后利用比例性质求出n即可.
解:根据题意得=,解得n=6,
所以口袋中小球共有6个.
故选:A.
【点评】本题考查了概率公式:随机事件A的概率PA.=事件A可能出现的结果数除以所有可能出现的结果数.
【考点】切线的性质.
【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.
解:连接OC,
∵CE是⊙O切线,
∴OC⊥CE,
∵∠A=30°,
∴∠BOC=2∠A=60°,
∴∠E=90°﹣∠BOC=30°,
∴sin∠E=sin30°=.
故选A.
【考点】二次函数图象与系数的关系.
【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.
解:∵抛物线与x轴有2个交点,
∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,
而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),
∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣=1,即b=﹣2a,
而x=﹣1时,y=0,即a﹣b+c=0,
∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),
∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,
∴当x<1时,y随x增大而增大,所以⑤正确.
故选B.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点. 
2 、填空题
【考点】勾股定理,圆周角定理
【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.
解:连接BD,
∵∠ACB=90°,
∴AB是⊙O的直径.
∵ACB的角平分线交⊙O于D,
∴∠ACD=∠BCD=45°,
∴AD=BD=5.
∵AB是⊙O的直径,
∴△ABD是等腰直角三角形,
∴AB===10.
∵AC=6,
∴BC===8.
故答案为:8.
【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.
【考点】二次函数的应用
【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.
解:当时,,
解得,(舍去),.
故答案为:10.
【点评】本题考查了二次函数的实际应用中,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.
【考点】概率公式;轴对称图形;中心对称图形.
【分析】由平行四边形、圆、等边三角形、正五边形、菱形中既是中心对称图形又是轴对称图形的有圆和菱形,利用概率公式即可求得答案.
解:既是中心对称图形又是轴对称图形的有圆、菱形,概率是;
故答案为:.
【考点】反比例函数图象上点的坐标特征.
【分析】直接把点A(1,﹣2)代入y=求出k的值即可.
解:∵反比例函数y=的图象经过点A(1,﹣2),
∴﹣2=,
解得k=﹣2.
故答案为:﹣2.
【考点】 一元二次方程根与系数的关系
【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.
解:∵x1、x2是方程2x2﹣3x﹣1=0的两根,
∴x1+x2=.x1x2=﹣,
∴x12+x22=,
故答案为:
【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.
【考点】旋转的性质,等边三角形的性质
【分析】根据旋转角及旋转对称图形的定义结合图形特点作答.
解:,
该图形绕中心至少旋转120度后能和原来的图案互相重合.
故答案为:120.
【点评】本题考查了旋转的性质、等边三角形的性质,对应点与旋转中心所连线段的夹角叫做旋转角.
3 、解答题
【考点】二次根式的混合运算,解一元二次方程
【分析】(1)用十字相乘法将方程左边的式子因式分解,解出x即可;(2)分别对根式,0次幂进行运算,然后进行加减运算即可.
解:(1)(x-6)(x+2)=0,
x-6=0或x+2=0,
x1=6,x2=-2;
(2)原式=3+1-=2+1.
【点评】掌握十字相乘法因式分解的方法以及实数的混合运算.
【考点】切线的性质;勾股定理.
【分析】连接OD,首先证明四边形OFCD是矩形,从而得到BF的长,然后利用垂径定理求得BE的长即可.
解:连接OD,作OF⊥BE于点F.
∴BF=BE,
∵AC是圆的切线,
∴OD⊥AC,
∴∠ODC=∠C=∠OFC=90°,
∴四边形ODCF是矩形,
∵OD=OB=FC=2,BC=3,
∴BF=BC﹣FC=BC﹣OD=3﹣2=1,
∴BE=2BF=2.
【点评】本题考查了切线的性质、勾股定理及垂径定理的知识,解题的关键是能够利用切线的性质构造矩形形,难度不大.
【考点】平移的作图,中心对称的作图
【分析】(1)分别确定向右平移4个单位后的对应点,再连接即可;
(2)分别确定绕原点O旋转180°后的对应点,再连接即可.
解:(1)如图,线段即为所求作的线段,
(2)如图,线段即为所求作的线段,
【点评】本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键.
【考点】条形统计图,扇形统计图,样本估计总体,树形图法或列表法求概率
【分析】(1)用条形统计图中D类的人数除以扇形统计图中D类所占百分比即可求出被抽查的总人数,用条形统计图中A类的人数除以总人数再乘以360°即可求出扇形统计图中A类所占扇形的圆心角的度数;
(2)用总人数减去其它三类人数即得B类人数,进而可补全条形统计图;
(3)用C类人数除以总人数再乘以600即可求出结果;
(4)先利用列表法求出所有等可能的结果数,再找出王芳和小颖两名学生选择同一个项目的结果数,然后根据概率公式计算即可.
解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为;
故答案为:50,72;
(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:
(3)名,
答:估计该校学生选择“C.社会实践类”的学生共有96名;
(4)所有可能的情况如下表所示:
由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,
∴王芳和小颖两名学生选择同一个项目的概率.
【点评】本题是统计与概率类综合题,主要考查了条形统计图、扇形统计图、利用样本估计总体和求两次事件的概率等知识,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.
【考点】一元二次方程的定义;根的判别式;二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】(1)直接利用△=b2﹣4ac,进而利用偶次方的性质得出答案;
(2)首先解方程,进而由|x1﹣x2|=6,求出答案;
(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.
(1)证明:由题意可得:
△=(1﹣5m)2﹣4m×(﹣5)
=1+25m2﹣10m+20m
=25m2+10m+1
=(5m+1)2≥0,
故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1﹣5m)x﹣5=0,
解得:x1=﹣,x2=5,
由|x1﹣x2|=6,
得|﹣﹣5|=6,
解得:m=1或m=﹣;
(3)解:由(2)得,当m>0时,m=1,
此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,
由题已知,P,Q关于x=2对称,
∴=2,即2a=4﹣n,
∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.
【点评】此题主要考查了抛物线与x轴的交点以及根的判别式,正确得出方程的根是解题关键.
【考点】一元二次方程的应用;二次函数的应用
【分析】(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
解:(1)由题意得:,
解得:.
故y与x之间的函数关系式为:y=﹣10x+700,
(2)由题意,得
﹣10x+700≥240,
解得x≤46,
设利润为w=(x﹣30) y=(x﹣30)(﹣10x+700),
w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=﹣10(46﹣50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,
﹣10(x﹣50)2=﹣250,
x﹣50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.
【分析】(1)由点P的坐标表示出点A.点B的坐标,从而得S△PAB= PA PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S△PAB可得答案;
(2)将(1)中所得解析式配方求得wmax=,代入T=wmax+a2﹣a配方即可得出答案.
解:(1)∵点P(3,4),
∴在y=中,当x=3时,y=,即点A(3,),
当y=4时,x=,即点B(,4),
则S△PAB= PA PB=(4﹣)(3﹣),
如图,延长PA交x轴于点C,
则PC⊥x轴,
又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,
∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;
(2)∵w=﹣t2+t=﹣(t﹣6)2+,
∴wmax=,
则T=wmax+a2﹣a=a2﹣a+=(a﹣)2+,
∴当a=时,Tmin=.
【考点】旋转的性质点,全等三角形的判定与性质
【分析】第一问是个明显的旋转问题,根据旋转的特点,我们能够得出CE=CF,,即是等边三角形; ;,进而:,再有
又由已知DE=CE,知,所以有,这样就能得出
则有AE=BD,所以AB=AE+BE=BD+AF。第(2)问,根据第一问的做法,我们应该像第(1)问那样去证明,全等的条件都是有AF=BE(旋转得出),DE=EF,这样关键就在于说明。要想说明这两个角相等,我们可以像第(1)问一样去证出,,这样我们就能得出AF∥CD,此时我们需要把BD和EF的交点标示为G点,这样就有,接下来我们可以想办法证明(条件有一个公用角和小角),这样就得出了,所以就有,也就得出了三角形全等,这样就有AE=BD,所以这时AB=AE-BE=BD-AF。第(3)问画图略过,理由可以参考第(2)问。
【问题提出】证明:由旋转知BE=AF,∠ABC=∠FAC,EC=FC,∠ECF=60°,
∴△ECF是等边三角形.
∴∠FEC=60°. ∴∠AEF+∠BEC=120°.
∵△ABC是等边三角形,∴∠BAC=∠ABC=60°.
∴∠BEC+∠BCE=120°,∴∠AEF=∠BCE.
∵ED=EC,∴∠D=∠ECD. ∴∠AEF=∠D.
∵∠FAC=60°,∠BAC=60°,∴∠EAF=120°.
∵∠ABC=60°,∴∠DBE=120°. ∴∠EAF=∠DBE.
∴△AEF≌△BDE. ∴AE=DB.
∵AB=AE+EB,EB=AF,AE=DB,∴AB=DB+AF.
【类比探究】(1)AB=DB-AF.
解:由旋转知 BE=AF,∠EBC=∠FAC,EC=FC,∠ECF=60°,
∴△ECF是等边三角形.
∴∠FEC=60°,∴∠FEA+∠BEC=60°.
∵△ABC是等边三角形,∴∠BAC=∠ABC=60°.
∴∠BEC+∠BCE=60°,∴∠FEA=∠BCE.
∵DE=CE,∴∠D=∠BCE,∴∠FEA=∠D.
∵∠ABC=60°,∴∠DBE=60°,∠EBC=120°.
∴∠FAC=∠EBC=120°.
∵∠BAC=60°,∴∠FAE=60°.
∴∠FAE=∠DBE.
∵∠FEA=∠D,AF=BE,∴△AEF≌△BDE. ∴AE=DB.
∵AB=AE-BE,AF=BE,
∴AB=DB-AF.
【类比探究】(2)AB=AF-DB.
只画出图3中的一个图即可.
【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.
(2)此题还考查了全等三角形的判定和性质的应用,要熟练掌握.
A
B
C
DD
E
F
图1
A
B
C
E
D
F
图2
图3
A
B
C
A
B
C
D
E
F
A
B
C
D
E
F
图3
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()

延伸阅读:

标签:

上一篇:2023-2024河北省衡水市景县二中八年级(上)期末物理试卷(图片版含答案)

下一篇:3.1水与水溶液(含解析) 同步练习题 2023-2024高二上学期化学鲁科版(2019)选择性必修1