2018年中考数学专题高分攻略6讲专题四动态探究型问题

2018年中考数学专题高分攻略6讲专题四动态探究型问题
一、单选题
1.(2017·天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(  )
A. B.
C. D.
【答案】D
【知识点】函数的图象
【解析】【解答】解:作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH,
∵∠B=30°,
∴AH= AB=2,BH= AH=2 ,
∴BC=2BH=4 ,
∵点P运动的速度为 cm/s,Q点运动的速度为1cm/s,
∴点P从B点运动到C需4s,Q点运动到C需8s,
当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP= x,
在Rt△BDQ中,DQ= BQ= x,
∴y= x x= x2,
当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4
在Rt△BDQ中,DQ= CQ= (8﹣x),
∴y= (8﹣x) 4 =﹣ x+8 ,
综上所述,y= .
故选D.
【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH= AB=2,BH= AH=2 ,则BC=2BH=4 ,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP= x,DQ= BQ= x,利用三角形面积公式得到y= x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4 ,DQ= CQ= (8﹣x),利用三角形面积公式得y=﹣ x+8 ,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.
2.(2017·青海)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是(  )
A. B.
C. D.
【答案】A
【知识点】函数的图象
【解析】【解答】解:∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,
∴N到C的时间为:t=3÷2=1.5,
分两部分:
①当0≤x≤1.5时,如图1,此时N在DC上,
S△AMN=y= AM AD= x×3= x,
②当1.5<x≤3时,如图2,此时N在BC上,
∴DC+CN=2x,
∴BN=6﹣2x,
∴S△AMN=y= AM BN= x(6﹣2x)=﹣x2+3x,
故选A.
【分析】分两部分计算y的关系式:①当点N在CD上时,易得S△AMN的关系式,S△AMN的面积关系式为一个一次函数;②当点N在CB上时,底边AM不变,示出S△AMN的关系式,S△AMN的面积关系式为一个开口向下的二次函数.
3.(2017·贵港)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是 ,其中正确结论的个数是(  )
A.2 B.3 C.4 D.5
【答案】D
【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质
【解析】【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正确;
根据△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON,∠COM=∠BON,
∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,
又∵DO=CO,
∴△CON≌△DOM(SAS),故②正确;
∵∠BON+∠BOM=∠COM+∠BOM=90°,
∴∠MON=90°,即△MON是等腰直角三角形,
又∵△AOD是等腰直角三角形,
∴△OMN∽△OAD,故③正确;
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,故④正确;
∵△OCM≌△OBN,
∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,
∴当△MNB的面积最大时,△MNO的面积最小,
设BN=x=CM,则BM=2﹣x,
∴△MNB的面积= x(2﹣x)=﹣ x2+x,
∴当x=1时,△MNB的面积有最大值 ,
此时S△OMN的最小值是1﹣ = ,故⑤正确;
综上所述,正确结论的个数是5个,
故选:D.
【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
4.(2017·鹤岗)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是(  )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.
A.2 B.3 C.4 D.5
【答案】C
【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质;解直角三角形
【解析】【解答】解:∵四边形ABCD是正方形,
∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,
在△ABE和△DCF中,

∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
在△ADG和△CDG中,

∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCF,
∴∠ABE=∠DAG,
∵∠DAG+∠BAH=90°,
∴∠BAE+∠BAH=90°,
∴∠AHB=90°,
∴AG⊥BE,故③正确,
同法可证:△AGB≌△CGB,
∵DF∥CB,
∴△CBG∽△FDG,
∴△ABG∽△FDG,故①正确,
∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,
又∵∠DAG=∠FCD,
∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确
取AB的中点O,连接OD、OH,
∵正方形的边长为4,
∴AO=OH= ×4=2,
由勾股定理得,OD= =2 ,
由三角形的三边关系得,O、D、H三点共线时,DH最小,
DH最小=2 ﹣2.
无法证明DH平分∠EHG,故②错误,
故①③④⑤正确,
故选C.
【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关关系一一判断即可.
5.(2017·新疆)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF的长为(  )
A.1 B. C.2 D.
【答案】C
【知识点】矩形的性质;翻折变换(折叠问题)
【解析】【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.
∵∠GFE+∠DFE=180°﹣∠AFG=120°,
∴∠GFE=60°.
∵AF∥GE,∠AFG=60°,
∴∠FGE=∠AFG=60°,
∴△GEF为等边三角形,
∴EF=GE.
∵∠FGE=60°,∠FGE+∠HGE=90°,
∴∠HGE=30°.
在Rt△GHE中,∠HGE=30°,
∴GE=2HE=CE,
∴GH= = HE= CE.
∵GE=2BG,
∴BC=BG+GE+EC=4EC.
∵矩形ABCD的面积为4 ,
∴4EC EC=4 ,
∴EC=1,EF=GE=2.
故选C.
【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC即可求出结论.
6.(2017·白银)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是(  )
A. B. C. D.
【答案】B
【知识点】函数的图象
【解析】【解答】解:点P运动2.5秒时P点运动了5cm,
CP=8﹣5=3cm,
由勾股定理,得
PQ= =3 cm,
故选:B.
【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.
二、填空题
7.(2017·随州)如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为   .
【答案】( , )
【知识点】轴对称的应用-最短距离问题
【解析】【解答】解:作N关于OA的对称点N′,连接N′M交OA于P,
则此时,PM+PN最小,
∵OA垂直平分NN′,
∴ON=ON′,∠N′ON=2∠AON=60°,
∴△NON′是等边三角形,
∵点M是ON的中点,
∴N′M⊥ON,
∵点N(3,0),
∴ON=3,
∵点M是ON的中点,
∴OM=1.5,
∴PM= ,
∴P( , ).
故答案为:( , ).
【分析】作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.
8.(2017·株洲)如图示直线y= x+ 与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为   .
【答案】π
【知识点】一次函数图象与几何变换
【解析】【解答】解:当y=0时, x+ =0,解得x=﹣1,则A(﹣1,0),
当x=0时,y= x+ = ,则B(0, ),
在Rt△OAB中,∵tan∠BAO= = ,
∴∠BAO=60°,
∴AB= =2,
∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度= = π.
故答案为 π.
【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0, ),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.
9.(2017·新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为    s时,四边形EFGH的面积最小,其最小值是    cm2.
【答案】3;18
【知识点】二次函数的最值;正方形的性质
【解析】【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,
根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4× t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,
∴当t=3时,四边形EFGH的面积取最小值,最小值为18.
故答案为:3;18
【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.
10.(2017·鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是   .
【答案】5
【知识点】正方形的性质;轴对称的应用-最短距离问题
【解析】【解答】解:连接AC、AE,
∵四边形ABCD是正方形,
∴A、C关于直线BD对称,
∴AE的长即为PC+PE的最小值,
∵CD=4,CE=1,
∴DE=3,
在Rt△ADE中,
∵AE= = =5,
∴PC+PE的最小值为5.
故答案为:5.
【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.
11.(2017·贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是   .
【答案】 ﹣1
【知识点】矩形的性质;翻折变换(折叠问题)
【解析】【解答】解:连接CE,如图所示.
根据折叠可知:A′E=AE= AB=1.
在Rt△BCE中,BE= AB=1,BC=3,∠B=90°,
∴CE= = .
∵CE= ,A′E=1,
∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E= ﹣1.
故答案为: ﹣1.
【分析】根据题意连接CE,根据折叠的性质可知A′E=1,再应用用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,即可得到所求结论.
三、综合题
12.(2017·广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为   ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证: = ;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
【答案】(1)(2 ,2)
(2)解:存在.理由如下:
连接BE,取BE的中点K,连接DK、KC.
∵∠BDE=∠BCE=90°,
∴KD=KB=KE=KC,
∴B、D、E、C四点共圆,
∴∠DBC=∠DCE,∠EDC=∠EBC,
∵tan∠ACO= = ,
∴∠ACO=30°,∠ACB=60°
①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,
∴∠DBC=∠DCE=∠EDC=∠EBC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等边三角形,
∴DC=BC=2,
在Rt△AOC中,∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC﹣CD=4﹣2=2.
∴当AD=2时,△DEC是等腰三角形.
②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2 ,
综上所述,满足条件的AD的值为2或2
(3)解:①由(2)可知,B、D、E、C四点共圆,
∴∠DBC=∠DCE=30°,
∴tan∠DBE= ,
∴ = .
②如图2中,作DH⊥AB于H.
在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
∴DH= AD= x,AH= = x,
∴BH=2 ﹣ x,
在Rt△BDH中,BD= = ,
∴DE= BD= ,
∴矩形BDEF的面积为y= [ ]2= (x2﹣6x+12),
即y= x2﹣2 x+4 ,
∴y= (x﹣3)2+ ,
∵ >0,
∴x=3时,y有最小值 .
【知识点】矩形的性质
【解析】【解答】解:(1)∵四边形AOCB是矩形,
∴BC=OA=2,OC=AB=2 ,∠BCO=∠BAO=90°,
∴B(2 ,2).
故答案为(2 ,2).
【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO= = ,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;
13.(2017·天门)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).
(1)四边形ABCD的面积为   ;
(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;
(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)20
(2)解:①当0≤t≤3时,∵BC∥AD,AB∥EF,
∴四边形ABFE是平行四边形,
∴S=AE OC=4t;
②当3≤t<7时,如图1,
∵C(0,﹣4),D(2,0),
∴直线CD的解析式为:y=2x﹣4,
∵E′F′∥AB,BF′∥AE′
∴BF′=AE=t,
∴F′(t﹣3,﹣4),
直线E′F′的解析式为:y=﹣2x+2t﹣10,
解 得,
∴G( ,t﹣7),
∴S=S四边形ABCD﹣S△DE′G=20﹣ ×(7﹣t)×(7﹣t)=﹣ t2+7t﹣ ,
③当t≥7时,S=S四边形ABCD=20,
综上所述:S关于t的函数解析式为:S= ;
(3)解:当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),
此时直线EF的解析式为:y=﹣2x﹣6,
设动点P的直线为(m,﹣2m﹣6),
∵PM⊥直线BC于M,交x轴于n,
∴M(m,﹣4),N(m,0),
∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,
①假设直线EF上存在点P,使点T恰好落在x轴上,
如图2,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,∴ =2,
作FK⊥x轴于K,则KF=4,
由△TKF∽△PNT得, =2,
∴NT=2KF=8,
∵PN2+NT2=PT2,
∴4(m+3)2+82=4(m+1)2,
解得:m=﹣6,∴﹣2m﹣6=﹣6,
此时,P(﹣6,6);
②假设直线EF上存在点P,使点T恰好落在y轴上,
如图3,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,
∴ =2,
作PH⊥y轴于H,则PH=|m|,
由△TFC∽△PTH得, ,
∴HT=2CF=2,
∵HT2+PH2=PT2,
即22+m2=4(m+1)2,
解得:m=﹣ ,m=0(不合题意,舍去),
∴m=﹣ 时,﹣2m﹣6=﹣ ,
∴P(﹣ ,﹣ ),
综上所述:直线EF上存在点P(﹣6,6)或P(﹣ ,﹣ )使点T恰好落在y轴上.
【知识点】一次函数的实际应用;全等三角形的应用;平行四边形的性质;相似三角形的应用
【解析】【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,
∴A(﹣5,0),
∴OA=5,
∴AC=7,
把x=﹣3代入y=﹣2x﹣10得,y=﹣4
∴OC=4,
∴四边形ABCD的面积= (3+7)×4=20;
故答案为:20;
【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G( ,t﹣7),于是得到S=S四边形ABCD﹣S△DE′G=20﹣ ×(7﹣t)×(7﹣t)=﹣ t2+7t﹣ ,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.
14.(2017·百色)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.
(1)求BC边所在直线的解析式;
(2)设y=MP2+OP2,求y关于a的函数关系式;
(3)当△OPM为直角三角形时,求点P的坐标.
【答案】(1)解:∵A(﹣4,0),B(0,﹣2),
∴OA=4,OB=2,
∵四边形ABCD是菱形,
∴OC=OA=4,OD=OB=2,
∴C(4,0),D(0,2),
设直线BC的解析式为y=kx﹣2,
∴4k﹣2=0,
∴k= ,
∴直线BC的解析式为y= x﹣2;
(2)解:由(1)知,C(4,0),D(0,2),
∴直线CD的解析式为y=﹣ x+2,
由(1)知,直线BC的解析式为y= x﹣2,
当点P在边BC上时,
设P(2a+4,a)(﹣2≤a<0),
∵M(0,4),
∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48
当点P在边CD上时,
∵点P的纵坐标为a,
∴P(4﹣2a,a)(0≤a≤2),
∵M(0,4),
∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,
(3)解:①当点P在边BC上时,即:0≤a≤2,
由(2)知,P(2a+4,a),
∵M(0,4),
∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2+8a+32,OM2=16,
∵△POM是直角三角形,易知,PM最大,
∴OP2+OM2=PM2,
∴5a2+16a+16+16=5a2+8a+32,
∴a=0(舍)
②当点P在边CD上时,即:0≤a≤2时,
由(2)知,P(4﹣2a,a),
∵M(0,4),
∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,
∵△POM是直角三角形,
(i)当∠POM=90°时,
∴OP2+OM2=PM2,
∴5a2﹣16a+16+16=5a2﹣24a+32,
∴a=0,
∴P(4,0),
(ii)当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,
∴a=2+ (舍)或a=2﹣ ,
∴P( ,2﹣ ),
即:当△OPM为直角三角形时,点P的坐标为( ,2﹣ ),(4,0).
【知识点】菱形的性质;二次函数-动态几何问题;直角三角形的性质
【解析】【分析】(1)先确定出OA=4,OB=2,再利用菱形的性质得出OC=4,OD=2,最后用待定系数法即可确定出直线BC解析式;
(2)分两种情况,先表示出点P的坐标,利用两点间的距离公式即可得出函数关系式;
(3)分两种情况,利用勾股定理的逆定理建立方程即可求出点P的坐标.
2018年中考数学专题高分攻略6讲专题四动态探究型问题
一、单选题
1.(2017·天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(  )
A. B.
C. D.
2.(2017·青海)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是(  )
A. B.
C. D.
3.(2017·贵港)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是 ,其中正确结论的个数是(  )
A.2 B.3 C.4 D.5
4.(2017·鹤岗)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是(  )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.
A.2 B.3 C.4 D.5
5.(2017·新疆)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF的长为(  )
A.1 B. C.2 D.
6.(2017·白银)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是(  )
A. B. C. D.
二、填空题
7.(2017·随州)如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为   .
8.(2017·株洲)如图示直线y= x+ 与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为   .
9.(2017·新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为    s时,四边形EFGH的面积最小,其最小值是    cm2.
10.(2017·鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是   .
11.(2017·贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是   .
三、综合题
12.(2017·广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为   ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证: = ;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
13.(2017·天门)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).
(1)四边形ABCD的面积为   ;
(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;
(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.
14.(2017·百色)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.
(1)求BC边所在直线的解析式;
(2)设y=MP2+OP2,求y关于a的函数关系式;
(3)当△OPM为直角三角形时,求点P的坐标.
答案解析部分
1.【答案】D
【知识点】函数的图象
【解析】【解答】解:作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH,
∵∠B=30°,
∴AH= AB=2,BH= AH=2 ,
∴BC=2BH=4 ,
∵点P运动的速度为 cm/s,Q点运动的速度为1cm/s,
∴点P从B点运动到C需4s,Q点运动到C需8s,
当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP= x,
在Rt△BDQ中,DQ= BQ= x,
∴y= x x= x2,
当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4
在Rt△BDQ中,DQ= CQ= (8﹣x),
∴y= (8﹣x) 4 =﹣ x+8 ,
综上所述,y= .
故选D.
【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH= AB=2,BH= AH=2 ,则BC=2BH=4 ,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP= x,DQ= BQ= x,利用三角形面积公式得到y= x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4 ,DQ= CQ= (8﹣x),利用三角形面积公式得y=﹣ x+8 ,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.
2.【答案】A
【知识点】函数的图象
【解析】【解答】解:∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,
∴N到C的时间为:t=3÷2=1.5,
分两部分:
①当0≤x≤1.5时,如图1,此时N在DC上,
S△AMN=y= AM AD= x×3= x,
②当1.5<x≤3时,如图2,此时N在BC上,
∴DC+CN=2x,
∴BN=6﹣2x,
∴S△AMN=y= AM BN= x(6﹣2x)=﹣x2+3x,
故选A.
【分析】分两部分计算y的关系式:①当点N在CD上时,易得S△AMN的关系式,S△AMN的面积关系式为一个一次函数;②当点N在CB上时,底边AM不变,示出S△AMN的关系式,S△AMN的面积关系式为一个开口向下的二次函数.
3.【答案】D
【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质
【解析】【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正确;
根据△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON,∠COM=∠BON,
∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,
又∵DO=CO,
∴△CON≌△DOM(SAS),故②正确;
∵∠BON+∠BOM=∠COM+∠BOM=90°,
∴∠MON=90°,即△MON是等腰直角三角形,
又∵△AOD是等腰直角三角形,
∴△OMN∽△OAD,故③正确;
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,故④正确;
∵△OCM≌△OBN,
∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,
∴当△MNB的面积最大时,△MNO的面积最小,
设BN=x=CM,则BM=2﹣x,
∴△MNB的面积= x(2﹣x)=﹣ x2+x,
∴当x=1时,△MNB的面积有最大值 ,
此时S△OMN的最小值是1﹣ = ,故⑤正确;
综上所述,正确结论的个数是5个,
故选:D.
【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
4.【答案】C
【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质;解直角三角形
【解析】【解答】解:∵四边形ABCD是正方形,
∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,
在△ABE和△DCF中,

∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
在△ADG和△CDG中,

∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCF,
∴∠ABE=∠DAG,
∵∠DAG+∠BAH=90°,
∴∠BAE+∠BAH=90°,
∴∠AHB=90°,
∴AG⊥BE,故③正确,
同法可证:△AGB≌△CGB,
∵DF∥CB,
∴△CBG∽△FDG,
∴△ABG∽△FDG,故①正确,
∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,
又∵∠DAG=∠FCD,
∴S△HDG:S△HBG=tan∠FCD,tan∠DAG,故④正确
取AB的中点O,连接OD、OH,
∵正方形的边长为4,
∴AO=OH= ×4=2,
由勾股定理得,OD= =2 ,
由三角形的三边关系得,O、D、H三点共线时,DH最小,
DH最小=2 ﹣2.
无法证明DH平分∠EHG,故②错误,
故①③④⑤正确,
故选C.
【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关关系一一判断即可.
5.【答案】C
【知识点】矩形的性质;翻折变换(折叠问题)
【解析】【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.
∵∠GFE+∠DFE=180°﹣∠AFG=120°,
∴∠GFE=60°.
∵AF∥GE,∠AFG=60°,
∴∠FGE=∠AFG=60°,
∴△GEF为等边三角形,
∴EF=GE.
∵∠FGE=60°,∠FGE+∠HGE=90°,
∴∠HGE=30°.
在Rt△GHE中,∠HGE=30°,
∴GE=2HE=CE,
∴GH= = HE= CE.
∵GE=2BG,
∴BC=BG+GE+EC=4EC.
∵矩形ABCD的面积为4 ,
∴4EC EC=4 ,
∴EC=1,EF=GE=2.
故选C.
【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4 ,即可求出EC的长度,根据EF=GE=2EC即可求出结论.
6.【答案】B
【知识点】函数的图象
【解析】【解答】解:点P运动2.5秒时P点运动了5cm,
CP=8﹣5=3cm,
由勾股定理,得
PQ= =3 cm,
故选:B.
【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.
7.【答案】( , )
【知识点】轴对称的应用-最短距离问题
【解析】【解答】解:作N关于OA的对称点N′,连接N′M交OA于P,
则此时,PM+PN最小,
∵OA垂直平分NN′,
∴ON=ON′,∠N′ON=2∠AON=60°,
∴△NON′是等边三角形,
∵点M是ON的中点,
∴N′M⊥ON,
∵点N(3,0),
∴ON=3,
∵点M是ON的中点,
∴OM=1.5,
∴PM= ,
∴P( , ).
故答案为:( , ).
【分析】作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.
8.【答案】π
【知识点】一次函数图象与几何变换
【解析】【解答】解:当y=0时, x+ =0,解得x=﹣1,则A(﹣1,0),
当x=0时,y= x+ = ,则B(0, ),
在Rt△OAB中,∵tan∠BAO= = ,
∴∠BAO=60°,
∴AB= =2,
∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度= = π.
故答案为 π.
【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0, ),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.
9.【答案】3;18
【知识点】二次函数的最值;正方形的性质
【解析】【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,
根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4× t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,
∴当t=3时,四边形EFGH的面积取最小值,最小值为18.
故答案为:3;18
【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.
10.【答案】5
【知识点】正方形的性质;轴对称的应用-最短距离问题
【解析】【解答】解:连接AC、AE,
∵四边形ABCD是正方形,
∴A、C关于直线BD对称,
∴AE的长即为PC+PE的最小值,
∵CD=4,CE=1,
∴DE=3,
在Rt△ADE中,
∵AE= = =5,
∴PC+PE的最小值为5.
故答案为:5.
【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.
11.【答案】 ﹣1
【知识点】矩形的性质;翻折变换(折叠问题)
【解析】【解答】解:连接CE,如图所示.
根据折叠可知:A′E=AE= AB=1.
在Rt△BCE中,BE= AB=1,BC=3,∠B=90°,
∴CE= = .
∵CE= ,A′E=1,
∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E= ﹣1.
故答案为: ﹣1.
【分析】根据题意连接CE,根据折叠的性质可知A′E=1,再应用用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,即可得到所求结论.
12.【答案】(1)(2 ,2)
(2)解:存在.理由如下:
连接BE,取BE的中点K,连接DK、KC.
∵∠BDE=∠BCE=90°,
∴KD=KB=KE=KC,
∴B、D、E、C四点共圆,
∴∠DBC=∠DCE,∠EDC=∠EBC,
∵tan∠ACO= = ,
∴∠ACO=30°,∠ACB=60°
①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,
∴∠DBC=∠DCE=∠EDC=∠EBC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等边三角形,
∴DC=BC=2,
在Rt△AOC中,∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC﹣CD=4﹣2=2.
∴当AD=2时,△DEC是等腰三角形.
②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2 ,
综上所述,满足条件的AD的值为2或2
(3)解:①由(2)可知,B、D、E、C四点共圆,
∴∠DBC=∠DCE=30°,
∴tan∠DBE= ,
∴ = .
②如图2中,作DH⊥AB于H.
在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
∴DH= AD= x,AH= = x,
∴BH=2 ﹣ x,
在Rt△BDH中,BD= = ,
∴DE= BD= ,
∴矩形BDEF的面积为y= [ ]2= (x2﹣6x+12),
即y= x2﹣2 x+4 ,
∴y= (x﹣3)2+ ,
∵ >0,
∴x=3时,y有最小值 .
【知识点】矩形的性质
【解析】【解答】解:(1)∵四边形AOCB是矩形,
∴BC=OA=2,OC=AB=2 ,∠BCO=∠BAO=90°,
∴B(2 ,2).
故答案为(2 ,2).
【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO= = ,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;
13.【答案】(1)20
(2)解:①当0≤t≤3时,∵BC∥AD,AB∥EF,
∴四边形ABFE是平行四边形,
∴S=AE OC=4t;
②当3≤t<7时,如图1,
∵C(0,﹣4),D(2,0),
∴直线CD的解析式为:y=2x﹣4,
∵E′F′∥AB,BF′∥AE′
∴BF′=AE=t,
∴F′(t﹣3,﹣4),
直线E′F′的解析式为:y=﹣2x+2t﹣10,
解 得,
∴G( ,t﹣7),
∴S=S四边形ABCD﹣S△DE′G=20﹣ ×(7﹣t)×(7﹣t)=﹣ t2+7t﹣ ,
③当t≥7时,S=S四边形ABCD=20,
综上所述:S关于t的函数解析式为:S= ;
(3)解:当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),
此时直线EF的解析式为:y=﹣2x﹣6,
设动点P的直线为(m,﹣2m﹣6),
∵PM⊥直线BC于M,交x轴于n,
∴M(m,﹣4),N(m,0),
∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,
①假设直线EF上存在点P,使点T恰好落在x轴上,
如图2,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,∴ =2,
作FK⊥x轴于K,则KF=4,
由△TKF∽△PNT得, =2,
∴NT=2KF=8,
∵PN2+NT2=PT2,
∴4(m+3)2+82=4(m+1)2,
解得:m=﹣6,∴﹣2m﹣6=﹣6,
此时,P(﹣6,6);
②假设直线EF上存在点P,使点T恰好落在y轴上,
如图3,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,
∴ =2,
作PH⊥y轴于H,则PH=|m|,
由△TFC∽△PTH得, ,
∴HT=2CF=2,
∵HT2+PH2=PT2,
即22+m2=4(m+1)2,
解得:m=﹣ ,m=0(不合题意,舍去),
∴m=﹣ 时,﹣2m﹣6=﹣ ,
∴P(﹣ ,﹣ ),
综上所述:直线EF上存在点P(﹣6,6)或P(﹣ ,﹣ )使点T恰好落在y轴上.
【知识点】一次函数的实际应用;全等三角形的应用;平行四边形的性质;相似三角形的应用
【解析】【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,
∴A(﹣5,0),
∴OA=5,
∴AC=7,
把x=﹣3代入y=﹣2x﹣10得,y=﹣4
∴OC=4,
∴四边形ABCD的面积= (3+7)×4=20;
故答案为:20;
【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G( ,t﹣7),于是得到S=S四边形ABCD﹣S△DE′G=20﹣ ×(7﹣t)×(7﹣t)=﹣ t2+7t﹣ ,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.
14.【答案】(1)解:∵A(﹣4,0),B(0,﹣2),
∴OA=4,OB=2,
∵四边形ABCD是菱形,
∴OC=OA=4,OD=OB=2,
∴C(4,0),D(0,2),
设直线BC的解析式为y=kx﹣2,
∴4k﹣2=0,
∴k= ,
∴直线BC的解析式为y= x﹣2;
(2)解:由(1)知,C(4,0),D(0,2),
∴直线CD的解析式为y=﹣ x+2,
由(1)知,直线BC的解析式为y= x﹣2,
当点P在边BC上时,
设P(2a+4,a)(﹣2≤a<0),
∵M(0,4),
∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48
当点P在边CD上时,
∵点P的纵坐标为a,
∴P(4﹣2a,a)(0≤a≤2),
∵M(0,4),
∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,
(3)解:①当点P在边BC上时,即:0≤a≤2,
由(2)知,P(2a+4,a),
∵M(0,4),
∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2+8a+32,OM2=16,
∵△POM是直角三角形,易知,PM最大,
∴OP2+OM2=PM2,
∴5a2+16a+16+16=5a2+8a+32,
∴a=0(舍)
②当点P在边CD上时,即:0≤a≤2时,
由(2)知,P(4﹣2a,a),
∵M(0,4),
∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,
∵△POM是直角三角形,
(i)当∠POM=90°时,
∴OP2+OM2=PM2,
∴5a2﹣16a+16+16=5a2﹣24a+32,
∴a=0,
∴P(4,0),
(ii)当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,
∴a=2+ (舍)或a=2﹣ ,
∴P( ,2﹣ ),
即:当△OPM为直角三角形时,点P的坐标为( ,2﹣ ),(4,0).
【知识点】菱形的性质;二次函数-动态几何问题;直角三角形的性质
【解析】【分析】(1)先确定出OA=4,OB=2,再利用菱形的性质得出OC=4,OD=2,最后用待定系数法即可确定出直线BC解析式;
(2)分两种情况,先表示出点P的坐标,利用两点间的距离公式即可得出函数关系式;
(3)分两种情况,利用勾股定理的逆定理建立方程即可求出点P的坐标.

延伸阅读:

标签:

上一篇:辽宁省辽阳市2023-2024高一上学期期中考试物理试卷(答案)

下一篇:山东省日照市莒县2019-2020上学期期中质量检测九年级物理试卷(答案)