2024届高三一轮复习小练(二十) 机械能守恒定律及其应用
1.嫦娥五号上升器月面点火(模拟图如图所示),一段时间后顺利进入到预定环月轨道,成功实现我国首次地外天体起飞。则上升器携带的月壤( )
A.上升过程中机械能守恒
B.加速上升时处于失重状态
C.进入环月轨道后做变速运动
D.进入环月轨道后加速度不变
解析:选C 嫦娥五号上升器月面点火加速上升,所以机械能增加,故A错误;加速上升时,加速度向上,处于超重状态,故B错误;进入环月轨道后,速度方向一直在变,做变速运动,故C正确;进入环月轨道后做圆周运动,加速度方向一直指向圆心,方向时刻改变,故D错误。
2.第24届冬季奥林匹克运动会将于2022年在北京举行。高山滑雪是冬奥会的一个比赛项目,因速度快、惊险刺激而深受观众喜爱。在一段时间内,运动员始终以如图所示的姿态加速下滑,若运动员受到的阻力不可忽略,则这段时间内他的( )
A.重力势能增加,动能减少,机械能守恒
B.重力势能增加,动能增加,机械能守恒
C.重力势能减少,动能减少,机械能减少
D.重力势能减少,动能增加,机械能减少
解析:选D 下滑过程中,运动员加速下滑,动能增加,重力做正功,重力势能减少,运动员要克服阻力做功,要消耗机械能,机械能减少,故选D。
3.(多选)长征途中,为了突破敌方关隘,战士爬上陡峭的山头,居高临下向敌方工事内投掷手榴弹。战士在同一位置先后投出甲、乙两颗质量均为m的手榴弹。手榴弹从投出的位置到落地点的高度差为h,在空中的运动可视为平抛运动,轨迹如图所示,重力加速度为g,下列说法正确的有( )
A.甲在空中的运动时间比乙的长
B.两手榴弹在落地前瞬间,重力的功率相等
C.从投出到落地,每颗手榴弹的重力势能减少mgh
D.从投出到落地,每颗手榴弹的机械能变化量为mgh
解析:选BC 甲、乙两颗手榴弹竖直方向下落的高度相同,由平抛运动的特点可知,它们的运动时间相等,A错误。落地前瞬间,PG=mgvy=mg2t,由于运动时间相等,故重力的瞬时功率相等,B正确。从投出到落地,重力做功为mgh,故重力势能减少mgh,C正确。从投出到落地过程中只有重力做功,手榴弹的机械能守恒,D错误。
4.一棵树上有一个质量为0.3 kg的熟透了的苹果P,该苹果从树上与A等高处先落到地面C最后滚入沟底D。已知AC、CD的高度差分别为2.2 m和3 m,以地面C为零势能参考平面,A、B、C、D、E面之间竖直距离如图所示。算出该苹果从A落下到D的过程中重力势能的减少量和在D处的重力势能分别是(g取10 m/s2)( )
A.15.6 J和9 J B.9 J和-9 J
C.15.6 J和-9 J D.15.6 J和-15.6 J
解析:选C 以地面C为零势能面,根据重力势能的计算公式得D处的重力势能Ep=mgh=-9 J,从A下落到D的过程中重力势能的减少量ΔEp=mgΔh=15.6 J,C正确。
5.如图所示,将一根长L=0.4 m的金属链条拉直放在倾角θ=30°的光滑斜面上,链条下端与斜面下边缘相齐,由静止释放后,当链条刚好全部脱离斜面时,其速度大小为(g取10 m/s2) ( )
A. m/s B. m/s C. m/s D. m/s
解析:选A 由静止释放到链条刚好全部脱离斜面时,链条的重力势能减少量为mgeq \b\lc\(\rc\)(\a\vs4\al\co1(sin 30°+))=mgL,由于斜面光滑,只有重力对链条做功,根据机械能守恒定律得mgL=mv2,解得v== m/s,故选A。
6.(多选)如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L。B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长。现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°。A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。则此下降过程中( )
A.A的动能达到最大前,B受到地面的支持力小于mg
B.A的动能最大时,B受到地面的支持力等于mg
C.弹簧的弹性势能最大时,A的加速度方向竖直向下
D.弹簧的弹性势能最大值为mgL
解析:选AB A的动能最大时,A受到的合外力等于0,加速度为0;设B和C受到地面的支持力大小均为F,此时三个物体组成的整体在竖直方向受力平衡,可得2F=3mg。所以F=mg,在A的动能达到最大前一直是加速下降,处于失重状态,所以B受到地面的支持力小于mg,故A、B正确;当A达到最低点时动能为零,此时弹簧的弹性势能最大,A的加速度方向向上,故C错误;A下落的高度为h=Lsin 60°-Lsin 30°,根据功能关系可知,小球A的机械能全部转化为弹簧的弹性势能,即弹簧的弹性势能最大值为Ep=mgh=mgL,故D错误。
7.(多选)一同学在实验室研究小球在竖直面内的圆周运动,其实验装置正视图如图所示,小球通过一条细线挂在细杆上,原来小球静止,该同学在最低点轻推了一下小球后,小球只是在竖直面内来回摆动,此人抓住小球让它仍停在最低点,然后使劲推了一下,小球则绕细杆做完整的圆周运动。不计空气阻力,细线始终处于伸直状态,假设小球质量m,细线长L,轻推时做功W,重推时做功4W,则W的值可能是( )
A.mgL B.mgL
C.mgL D.mgL
解析:选BC 若小球只是在竖直面内来回摆动,则小球上升的最大高度恰好与O在同一个水平线上,则:Wmax=mgL;若小球在竖直平面内做圆周运动,则小球到达最高点时:vmin=,小球向上运动的过程中机械能守恒,则:4W-mg·2L≥mvmin2可得:W≥mgL;总之,W应满足:mgL≤W≤mgL;故A、D错误,B、C正确。
8.(多选)如图所示,是一儿童游戏机的工作示意图。光滑游戏面板与水平面成一夹角θ,半径为R的四分之一圆弧轨道BC与AB管道相切于B点,C点为圆弧轨道最高点,轻弹簧下端固定在AB管道的底端,上端系一轻绳,绳通过弹簧内部连一手柄P。将球投入AB管内,缓慢下拉手柄使弹簧被压缩,释放手柄,弹珠被弹出,与游戏面板内的障碍物发生一系列碰撞后落入弹槽里,根据入槽情况可以获得不同的奖励。假设所有轨道均光滑,忽略空气阻力,弹珠视为质点。某次缓慢下拉手柄,使弹珠距B点为L,释放手柄,弹珠被弹出,到达C点速度为v,下列说法正确的是( )
A.弹珠从释放手柄开始到触碰障碍物之前的过程中机械能不守恒
B.调整手柄的位置,可以使弹珠从C点离开后做匀变速直线运动,直到碰到障碍物
C.弹珠脱离弹簧的瞬间,其动能和重力势能之和达到最大
D.此过程中,弹簧的最大弹性势能为mg(L+R)sin θ+mv2
解析:选ACD 弹簧对弹珠做功,其机械不守恒,故A正确;弹珠从C点离开后做匀变速曲线运动,故B错误;弹簧的弹力对弹珠做正功,弹珠的动能和重力势能之和不断增大,根据弹珠和弹簧组成的系统机械能守恒,知弹珠脱离弹簧的瞬间,弹簧的弹性势能全部转化为弹珠的动能和重力势能,所以此瞬间动能和重力势能之和达到最大,故C正确;根据系统的机械能守恒得,弹簧的最大弹性势能等于弹珠在C点的机械能,为mg(L+R)sin θ+mv2,故D正确。
9.如图甲所示,一质量m=4 kg的小球(可视为质点)以v0=4 m/s的速度从A点冲上竖直光滑半圆轨道。当半圆轨道的半径R发生改变时,小球对B点的压力与半径R的关系图像如图乙所示,g取10 m/s2,下列说法中正确的是( )
A.x=2.5
B.y=40
C.若小球能通过轨道上的C点,则其落地点距A点的最大水平距离为0.80 m
D.当小球恰能通过轨道上的C点时,半圆轨道的半径R=64 cm
解析:选C 设物块到达B点时的速度为vB,由牛顿第二定律得F=m,从A点到B点过程中,由机械能守恒定律得mvA2=mvB2+mgR,整理F=m-2mg=-80,故x=1.25,y=80,故A、B错误;从A点到C点过程中mvA2=mvC2+2mgR,平抛过程2R=gt2,x=vCt,解得x= × =,根据数学关系可知,当R=0.2 m,其落地点距A点的最大水平距离为0.80 m,故C正确;当小球恰能通过轨道上的C点时mg=m ,mvA2=mvC2+2mgR,解得半圆轨道的半径32 cm,故D错误。
10.如图甲所示,在同一竖直平面内两正对着的相同半圆光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x的图像如图乙所示。(g取10 m/s2,不计空气阻力) 求:
(1)小球的质量;
(2)若小球在最低点B的速度为20 m/s,为使小球能沿轨道运动,x的最大值为多少。
解析:(1)设轨道半径为R,由机械能守恒定律
mvB2=mg(2R+x)+mvA2
对B点:FN1-mg=m
对A点:FN2+mg=m
联立解得两点的压力差:
ΔFN=FN1-FN2=6mg+
由图像得:截距6mg=6,得m=0.1 kg
(2)因为图线的斜率k==1所以R=2 m
在A点不脱离的条件为:vA≥
解得:x=15 m
答案:(1)0.1 kg (2)15 m
11.如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放于倾角为53°的光滑斜面上。一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉至水平,使小球在位置
C由静止释放,小球到达最低点D时,细绳刚好被拉断。之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm。(g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:
(1)细绳受到的拉力的最大值;
(2)D点到水平线AB的高度h;
(3)弹簧所获得的最大弹性势能Ep。
解析:(1)小球由C到D,由机械能守恒定律得
mgL=mv12
解得v1=
在D点,由牛顿第二定律得F-mg=m,
联立解得F=30 N
由牛顿第三定律知细绳所能承受的最大拉力为30 N。
(2)由D到A,小球做平抛运动,则有vy2=2gh
tan 53°=
联立解得h=16 cm。
(3)小球从C点到将弹簧压缩至最短的过程中,小球与弹簧组成的系统的机械能守恒,即
Ep=mg(L+h+xsin 53°),
代入数据解得Ep=2.9 J。
答案:(1)30 N (2)0.16 m (3)2.9 J2024届高三一轮复习小练(二十) 机械能守恒定律及其应用
1.嫦娥五号上升器月面点火(模拟图如图所示),一段时间后顺利进入到预定环月轨道,成功实现我国首次地外天体起飞。则上升器携带的月壤( )
A.上升过程中机械能守恒
B.加速上升时处于失重状态
C.进入环月轨道后做变速运动
D.进入环月轨道后加速度不变
2.第24届冬季奥林匹克运动会将于2022年在北京举行。高山滑雪是冬奥会的一个比赛项目,因速度快、惊险刺激而深受观众喜爱。在一段时间内,运动员始终以如图所示的姿态加速下滑,若运动员受到的阻力不可忽略,则这段时间内他的( )
A.重力势能增加,动能减少,机械能守恒
B.重力势能增加,动能增加,机械能守恒
C.重力势能减少,动能减少,机械能减少
D.重力势能减少,动能增加,机械能减少
3.(多选)长征途中,为了突破敌方关隘,战士爬上陡峭的山头,居高临下向敌方工事内投掷手榴弹。战士在同一位置先后投出甲、乙两颗质量均为m的手榴弹。手榴弹从投出的位置到落地点的高度差为h,在空中的运动可视为平抛运动,轨迹如图所示,重力加速度为g,下列说法正确的有( )
A.甲在空中的运动时间比乙的长
B.两手榴弹在落地前瞬间,重力的功率相等
C.从投出到落地,每颗手榴弹的重力势能减少mgh
D.从投出到落地,每颗手榴弹的机械能变化量为mgh
4.一棵树上有一个质量为0.3 kg的熟透了的苹果P,该苹果从树上与A等高处先落到地面C最后滚入沟底D。已知AC、CD的高度差分别为2.2 m和3 m,以地面C为零势能参考平面,A、B、C、D、E面之间竖直距离如图所示。算出该苹果从A落下到D的过程中重力势能的减少量和在D处的重力势能分别是(g取10 m/s2)( )
A.15.6 J和9 J B.9 J和-9 J
C.15.6 J和-9 J D.15.6 J和-15.6 J
5.如图所示,将一根长L=0.4 m的金属链条拉直放在倾角θ=30°的光滑斜面上,链条下端与斜面下边缘相齐,由静止释放后,当链条刚好全部脱离斜面时,其速度大小为(g取10 m/s2) ( )
A. m/s B. m/s C. m/s D. m/s
6.(多选)如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L。B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长。现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°。A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。则此下降过程中( )
A.A的动能达到最大前,B受到地面的支持力小于mg
B.A的动能最大时,B受到地面的支持力等于mg
C.弹簧的弹性势能最大时,A的加速度方向竖直向下
D.弹簧的弹性势能最大值为mgL
7.(多选)一同学在实验室研究小球在竖直面内的圆周运动,其实验装置正视图如图所示,小球通过一条细线挂在细杆上,原来小球静止,该同学在最低点轻推了一下小球后,小球只是在竖直面内来回摆动,此人抓住小球让它仍停在最低点,然后使劲推了一下,小球则绕细杆做完整的圆周运动。不计空气阻力,细线始终处于伸直状态,假设小球质量m,细线长L,轻推时做功W,重推时做功4W,则W的值可能是( )
A.mgL B.mgL
C.mgL D.mgL
8.(多选)如图所示,是一儿童游戏机的工作示意图。光滑游戏面板与水平面成一夹角θ,半径为R的四分之一圆弧轨道BC与AB管道相切于B点,C点为圆弧轨道最高点,轻弹簧下端固定在AB管道的底端,上端系一轻绳,绳通过弹簧内部连一手柄P。将球投入AB管内,缓慢下拉手柄使弹簧被压缩,释放手柄,弹珠被弹出,与游戏面板内的障碍物发生一系列碰撞后落入弹槽里,根据入槽情况可以获得不同的奖励。假设所有轨道均光滑,忽略空气阻力,弹珠视为质点。某次缓慢下拉手柄,使弹珠距B点为L,释放手柄,弹珠被弹出,到达C点速度为v,下列说法正确的是( )
A.弹珠从释放手柄开始到触碰障碍物之前的过程中机械能不守恒
B.调整手柄的位置,可以使弹珠从C点离开后做匀变速直线运动,直到碰到障碍物
C.弹珠脱离弹簧的瞬间,其动能和重力势能之和达到最大
D.此过程中,弹簧的最大弹性势能为mg(L+R)sin θ+mv2
9.如图甲所示,一质量m=4 kg的小球(可视为质点)以v0=4 m/s的速度从A点冲上竖直光滑半圆轨道。当半圆轨道的半径R发生改变时,小球对B点的压力与半径R的关系图像如图乙所示,g取10 m/s2,下列说法中正确的是( )
A.x=2.5
B.y=40
C.若小球能通过轨道上的C点,则其落地点距A点的最大水平距离为0.80 m
D.当小球恰能通过轨道上的C点时,半圆轨道的半径R=64 cm
10.如图甲所示,在同一竖直平面内两正对着的相同半圆光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x的图像如图乙所示。(g取10 m/s2,不计空气阻力) 求:
(1)小球的质量;
(2)若小球在最低点B的速度为20 m/s,为使小球能沿轨道运动,x的最大值为多少。
11.如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放于倾角为53°的光滑斜面上。一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉至水平,使小球在位置
C由静止释放,小球到达最低点D时,细绳刚好被拉断。之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm。(g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:
(1)细绳受到的拉力的最大值;
(2)D点到水平线AB的高度h;
(3)弹簧所获得的最大弹性势能Ep。