上海市2022-2023五年级下学期小升初数学真题考前冲刺押题卷(沪教版)(含解析)

上海市2022-2023学年五年级下学期
小升初数学真题考前冲刺押题卷(沪教版)
一.选择题(12分)
1.下面(  )图形能围成正方体。
A.B. C.
2.如图,比较两条平行线之间的三个阴影部分的面积,(  )
A.三角形面积最大 B.梯形面积最大
C.平行四边形面积最大 D.三个面积一样大
3.如图,将右面的纸片折起来可以做成一个正方体,这个正方体的6号面的对面是(  )号面。
A.4 B.3 C.1 D.5
4.如图,比较三角形甲和三角形乙的面积,说法正确的是(  )
A.三角形甲的面积是乙的面积的一半
B.三角形乙的面积是甲的面积的一半
C.三角形甲的面积和乙的面积相等
5.下列说法中正确的有(  )个。
①小数乘小数积小于每一个乘数
②长方形、正方形是特殊的平行四边形
③小数点后面添上0或去掉0,小数的大小不变
④三角形越大,内角和越大
A.1 B.2 C.3 D.4
6.亮亮把一个底是8cm,面积是20cm2的三角形沿两边的中点剪开,将上面的小三角形旋转后与剩下部分拼成一个平行四边形。拼成后平行四边形的高是(  )cm。
A.2 B.2.5 C.4 D.5
7.如图各图形中,涂色部分的面积相等的图形是(  );(单位:厘米)
A.①和② B.①和③ C.②和③
8.如图是测量一个铁球体积的过程:根据以下测量过程推测一个铁球的体积是在(  )
①将300mL的水倒入一个容积是500mL的杯子中
②将四个相同的铁球放入水中,水没有满
③再将一个同样的铁球放入水中,水满溢出
A.50cm3以上60cm3以下 B.30cm3以上40cm3以下
C.40cm3以上50cm3以下 D.无法确定
9.如图由6个边长5cm的正方形组成,三角形①、②、③的面积之和是(  )cm2?
A.30 B.50 C.60 D.150
10.一个长方体,底面是一个周长为8cm的正方形,侧面展开后也是一个正方形,这个长方体的表面积是(  )cm2。
A.36 B.72 C.48 D.68
二.填空题(10分)
11.用一根铁丝围成一个长方体,它的长是14分米,宽是8分米,高是17分米。如果把这根铁丝改围成一个正方体,这个正方体的棱长是    分米。
12.前进和后退是恰恰舞练习里面的两个基本动作。如果佳佳在练习恰恰舞时向前走1步,记作+1步,那么她走﹣2步表示    。
13.某种药品的说明书上标明保存温度是(20±2)℃,由此可知,在    ℃~   ℃范围内保存才合适。
14.0.86×1.2的积是    位小数,得数精确到百分位约是    。
15.如图,小飞准备了一些硬纸片围了一个最大的长方体,所围长方体的体积是    cm3,表面积是    cm2。
16.母亲节,鲜花店上午卖出200支鲜花,下午卖出120支,每支a元,这一天共卖出    元。当a=2时,下午比上午少卖    元。
17.小明由于粗心把60×(a+4)错写成60×a+4,他算的结果与正确结果相差   。
18.把一个长方形框架用力一拉,拉成一个平行四边形,与原来框架比,周长    ,面积    ;如果拉成的平行四边形的面积是32cm2,与它等底等高的三角形的面积是    cm2。
19.在0.5,﹣3,+90%,12,0,﹣73.2,+6.1,这几个数中,正数有    个,负数有    个,   既不是正数,也不是负数。
20.由7个一,4个十分之一和9个百分之一组成的数写作    ,保留一位小数约是    。
三.判断题(15分)
21.方程左右两边同时乘一个相同的数,左右两边仍然相等.   .(判断对错)
22.乐乐的身高是152cm,他去平均水深为140cm的水域游泳,不会有危险。    (判断对错)
23.0.5和0.50它们的大小相同,计数单位却不相同。    (判断对错)
24.面积相等的两个三角形,底和高也一定分别相等。    (判断对错)
25.中国是最早认识和使用负数的国家.   (判断对错)
26.学校游泳池长35米,明明游了4个来回,他一共游了140米.   (判断对错)
27.如果5x﹣4=38,那么4x+1.5=35.1。    (判断对错)
28.把一个长方形框架拉成一个平行四边形,它的周长不变,面积变小。    (判断对错)
29.面积相等的两个平行四边形一定等底等高.    .(判断对错)
四.计算题(20分)
30.口算。
0.42÷6= 3.6÷1.2= 0.03×1000= 2﹣1.48=
3.2÷0.1= 8×12.5= 2.34+0.7= 0.24÷0.3=
1.45+5.5= 0.09÷0.01= 0.4×2.8×5= 1.36+2.87+8.64=
31.列竖式计算。
(1)2.091÷1.02= (2)0.2223÷0.65≈(精确到百分位)
(3)1.5÷0.045=(用循环小数表示) (4)3.17×9.86=
32.递等式计算。
1.08×0.8÷0.27= 8.45﹣7.2÷1.6= 7.6×7.3+2.7×7.6=
五.操作题(18分)
33.以OA为下底画一个面积是9cm2的直角梯形(1小格为1cm2),再画出绕O点顺时针旋转90°后的图形。
34.方格纸上每个小方格的边长是1cm。
(1)在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm。
(2)计算这个梯形的面积。
六.应用题(27分)
35.一个长、宽、高分别为36厘米、20厘米、15厘米的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?
36.北京冬季奥林匹克公园位于北京市首钢区,是2022年北京冬季奥运会最伟大的遗产之一,总占地面积171.2公顷,比广东省第十六届省运会举办场馆——清远奥林匹克体育馆占地面积的3倍少20.8公顷。清远奥林匹克体育馆占地面积是多少公顷?(用方程解)
37.在一个长50cm,宽40cm的长方体玻璃缸中,放入一块棱长为30cm的正方体铁块,这时水深35cm(完全浸没,水未溢出),若把铁块从缸中取出,缸中的水深是多少厘米?
38.某停车场一共有260个车位,分为普通车位和充电桩车位。普通车位是充电桩车位的5.5倍,这个停车场普通车位有多少个?(用方程解)
39.客车和货车同时从甲地开往乙地。经过10小时后,货车落在客车后面80千米。客车每小时行驶95千米,货车每小时行驶多少千米?(用方程解)
40.学校新建一个长方体游泳池,从里面量底面长50米、宽25米、高2米。
(1)在游泳池的底面和侧面贴一层瓷砖,如果每平方米瓷砖的价格是40元,那么一共需要多少元?
(2)如果每立方米的水重1吨,那么在游泳池中注入多少吨水,才能使水深1.6米?
41.测得一盒磁带长11cm、宽7cm、高2cm。现有2盒磁带,用不同的方式包装,哪一种方式更省包装纸?需要多少平方厘米?
42.一块上底为1.5米,下底为2.1米,高为0.5米的梯形铁皮,要在两面都喷上一层油漆。如果每平方米用油漆0.26千克,需要准备多少千克油漆?(得数保留一位小数)
43.六(3)班平均体重为33.5千克,以超出平均体重为正,低于平均体重为负,小红的体重记为+4.4千克,小丽的体重记为﹣26千克,小超的体重记为+6.6千克,小敏的体重记为﹣3.9千克,四人的平均体重是多少?
上海市2022-2023学年五年级下学期
小升初数学真题考前冲刺押题卷(沪教版)
参考答案与试题解析
一.选择题(共10小题)
1.【答案】C
【分析】根据正方体展开图的11种特征,图A、图B不属于正方体展开图,不能围成正方体;图C属于正方体展开图的“1﹣4﹣1”型,能围成正方体。据此解答即可。
【解答】解:分析可知,图形能围成正方体。
故选:C。
【分析】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形。
2.【答案】D
【分析】根据平行四边形的面积公式:S=ah,三角形的面积公式:S=ah÷2,梯形的面积公式:S=(a+b)h÷2,通过观察图形可知,这三个图形的高相等,设它们的高为h厘米,把数据代入公式求出它们的面积,然后进行比较即可。
【解答】解:设它们的高为h厘米。
平行四边形的面积是4h(平方厘米);
三角形的面积是8h÷2=4h(平方厘米);
梯形的面积是(6+2)h÷2=4h(平方厘米)。
所以它们的面积相等。
故选:D。
【分析】此题主要考查梯形、三角形、平行四边形面积公式的灵活运用,关键是熟记公式。
3.【答案】A
【分析】如图,根据正方体展开图的特征,属于“1﹣3﹣2”型,折叠成一个正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对。据此解答。
【解答】解:1号面与5号面相对,2号面与3号面相对,4号面与6号面相对。
答:这个正方体的6号面的对面是4号面。
故选:A。
【分析】本题是考查正方体的展开图,是培养学生的观察能力、分析能力和空间想象能力.此类题可动手折叠一下,即可解决问题,又锻炼了动手操作能力。
4.【答案】A
【分析】根据三角形的面积公式:S=ah÷2,通过观察图形可知,甲、乙两个三角形的高相等,乙三角形的底是甲三角形底的2倍,所以三角形甲的面积是乙的面积的一半。据此解答即可。
【解答】解:因为甲、乙两个三角形的高相等,乙三角形的底是甲三角形底的2倍,所以三角形甲的面积是乙的面积的一半。
故选:A。
【分析】此题主要考查三角形面积公式的灵活运用,关键是熟记公式。
5.【答案】A
【分析】①一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘大于1的数,积大于这个数;据此判断;
②根据平行四边形、长方形、正方形的特征可知,长方形、正方形都是特殊的平行四边形。据此判断;
③根据小数的性质,在小数的末尾添上0或去掉0,小数的大小不变。据此判断;
④三角形的内角和是180°,三角形的面积无论大小,三角形的内角和不变。据此判断。
【解答】解:由分析得:
①小数乘小数积小于每一个乘数。此说法错误;
②长方形、正方形是特殊的平行四边形。此说法正确;
③小数点后面添上0或去掉0,小数的大小不变。此说法错误;
④三角形越大,内角和越大。此说法错误。
所以说法正确的有1个。
故选:A。
【分析】此题考查的目的是理解小数乘法的意义、小数乘法的计算法则及应用,长方形、正方形、平行四边形的特征及应用,小数的性质及应用,三角形内角和及应用。
6.【答案】B
【分析】根据三角形面积公式的推导过程可知,把这个三角形“转化”为平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形高的一半,根据三角形的面积公式:S=ah÷2,那么h=2S÷a,据此解答即可。
【解答】解:20×2÷8÷2
=40÷8÷2
=5÷2
=2.5(厘米)
答:拼成后平行四边形的高是2.5厘米。
故选:B。
【分析】此题考查的目的是理解掌握三角形面积公式推导的过程及应用。
7.【答案】A
【分析】根据三角形的面积公式S=ah÷2,分别确定出三个三角形的底和高,计算出各自的面积,再看哪两个三角形的面积相等即可。
【解答】解:①中涂色部分的面积:
8×10÷2
=80÷2
=40(平方厘米)
②中涂色部分的面积:
8×10÷2
=80÷2
=40(平方厘米)
③中涂色部分的面积:
8×8÷2
=64÷2
=32(平方厘米)
答:涂色部分的面积相等的图形是①和②。
故选:A。
【分析】解答本题需准确确定三角形的底和高,熟练使用三角形的面积公式。
8.【答案】C
【分析】已知量杯的容积是500毫升,里面有水300毫升,通过观察图形可知,放入4个铁球水没有满,再放入4个铁球后水满溢出,由此可知4个铁球的体积小于(500﹣300)立方厘米,根据“等分”除法的意义,用除法求出每个铁球的体积。
【解答】解:500毫升=500立方厘米
300毫升=300立方厘米
(500﹣300)÷4
=200÷4
=50(立方厘米)
所以每个铁球的体积在40立方厘米以上50立方厘米以下。
故选:C。
【分析】此题考查的目的是理解掌握不规则物体体积的计算方法及应用。
9.【答案】B
【分析】根据三角形的面积公式:S=ah÷2,通过观察图形可知,三角形①、②、③的底之和是(5×4)厘米,高是5厘米,把数据代入公式解答。
【解答】解:5×4×5÷2
=20×5÷2
=50(平方厘米)
答:三角形①、②、③的面积之和是50平方厘米。
故选:B。
【分析】此题主要考查三角形面积公式的灵活运用,关键是熟记公式。
10.【答案】B
【分析】根据长方体的特征,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.在长方体中如果有两个相对的面是正方形,那么其它4个侧面是完全相同的长方形.由此解答。
【解答】解:一个长方体,底面周长为8厘米的正方形,侧面展开也是一个正方形,由此可知长方体的高也是8厘米。
根据正方形的周长=边长×4,则底面边长是:8÷4=2(厘米)
长方体的表面积是:
2×2×2+8×8
=8+64
=72(平方厘米)
答:这个长方体的表面积是72平方厘米。
故选:B。
【分析】此题主要考查长方体的特征和表面积的计算,明确在长方体中如果有两个相对的面是正方形,那么其它4个侧面是完全相同的长方形。
二.填空题(共10小题)
11.【答案】13。
【分析】首先根据长方体的棱长总和=(长+宽+高)×4,求出这根铁丝的长度,然后用铁丝的长度除以12求出正方体的棱长,把数据代入公式解答。
【解答】解:(14+8+17)×4÷12
=39×4÷12
=156÷12
=13(dm)
答:这个正方体的棱长是13dm。
故答案为:13。
【分析】掌握棱长总和不变及长、正方体棱长之和的求法是解决此题的关键。
12.【答案】后退2步。
【分析】此题主要用正负数来表示具有意义相反的两种量:向前走记为正,则向后走就记为负,直接得出结论即可。
【解答】解:前进和后退是恰恰舞练习里面的两个基本动作。如果佳佳在练习恰恰舞时向前走1步,记作+1步,那么她走﹣2步表示后退2步。
故答案为:后退2步。
【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负。
13.【答案】18,22。
【分析】以20℃为保存温度的标准温度,高于这个数的温度记作正,低于这个数的温度记作负,所以药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,据此即可求得温度的范围
【解答】解:20℃﹣2℃=18℃
20℃+2℃=22℃
所以在18℃~22℃范围内保存才合适。
故答案为:18,22。
【分析】本题考查了正负数表示相反意义的量,关键是正确理解说明书标明保存温度是(20±2)℃的含义。
14.【答案】三,1.03。
【分析】根据小数乘法的计算法则可知,积的小数位数等于两个因数的小数位数之和,因为0.86是两位小数,1.2是一位小数,所以0.86×1.2的积是三位小数,根据小数乘法的计算法则求出积,再利用“四舍五入”法保留两位小数即可。
【解答】解:0.86×1.2=1.032
1.032≈1.03
所以,0.86×1.2的积是三位小数,得数精确到百分位约是1.03。
故答案为:三,1.03。
【分析】此题考查的目的是理解掌握小数乘法的计算法则及应用,利用“四舍五入”法求积的近似数的方法及应用。
15.【答案】40,76。
【分析】根据长方体的特征,长方体的6个面都是长方形(特殊情况有两个相对的面是正方形),相对面的面积相等。可以选择边长是5厘米,宽是2厘米的长方形2个,长4厘米,宽2厘米的长方形4个,围成一个长是5厘米,宽是2厘米,高是4厘米的长方体,根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,把数据代入公式解答。
【解答】解:5×2×4
=10×4
=40(立方厘米)
(5×2+5×4+2×4)×2
=(10+20+8)×2
=38×2
=76(平方厘米)
答:所围长方体的体积是40立方厘米,表面积是76平方厘米。
故答案为:40,76。
【分析】此题考查的目的是理解掌握长方体的特征及应用,长方体的体积公式、表面积公式及应用,关键是熟记公式。
16.【答案】320a;160。
【分析】根据总价=单价×数量,上午共卖出200a元,下午共卖出120a元。据此解答即可。
【解答】解:200a+120a=320a
200a﹣120a=80a
当a=2时,80a=80×2=160(元)
答:这一天共卖出320a元。当a=2时,下午比上午少卖160元。
故答案为:320a;160。
【分析】解答本题需熟练掌握总价、单价和数量之间的关系,结合题意分析解答即可。
17.【答案】236。
【分析】先利用乘法分配律将算式60×(a+4)展开,再计算出60×(a+4)与60×a+4的结果相差多少即可。
【解答】解:60×(a+4)
=60×a+60×4
=60a+240
60a+240﹣(60×a+4)
=60a+240﹣60a﹣4
=240﹣4
=236
答:他算的结果与正确结果相差236。
故答案为:236。
【分析】解答本题需熟练掌握乘法分配律和含有字母的算式的计算方法。
18.【答案】不变,变小;16。
【分析】把一个长方形框架用力一拉,拉成一个平行四边形,与原来框架比,周长不变。面积变小;等底等高的三角形的面积是平行四边形面积的一半,据此解答即可。
【解答】解:把一个长方形框架用力一拉,拉成一个平行四边形,与原来框架比,周长不变。面积变小。
32÷2=16(平方厘米)
所以与它等底等高的三角形的面积是16平方厘米。
故答案为:不变,变小;16。
【分析】此题考查的目的是理解掌握长方形、平行四边形的周长、面积的意义及应用,等底等高的三角形与平行四边形面积之间的关系及应用。
19.【答案】0.5、+90%、12、+6.1、,﹣3、﹣73.2,0。
【分析】根据正数的意义,以前学过的7、36、8这样的数叫做正数,正数前面也可以加“+”号,因此,+7、+36、8是正数;根据负数的意义,为了表示两种相反意义的量,这里出现了一种新的数,像﹣12、﹣7、﹣3叫做负数;0即不是正数也不是负数;由此解答即可。
【解答】解:在0.5,﹣3,+90%,12,0,﹣73.2,+6.1,这几个数中,正数有0.5、+90%、12、+6.1、,负数有﹣3、﹣73.2,0既不是正数,也不是负数。
故答案为:0.5、+90%、12、+6.1、,﹣3、﹣73.2,0。
【分析】本题是考查正、负数的意义,注意基础知识的积累。
20.【答案】7.49;7.5。
【分析】借助数位顺序表,7个一在个位上写7,4个十分之一在十分位上写4,9个百分之一在百分位上写9,这个数就是7.49,把它保留一位小数,就要看百分位上的数是否满5,再运用“四舍五入”法求得近似值即可。
【解答】解:由7个一,4个十分之一和9个百分之一组成的数写作7.49,保留一位小数约是7.5。
故答案为:7.49;7.5。
【分析】此题考查小数的意义,解答时一定要看清小数的数位和这个数位的计数单位。
三.判断题(共9小题)
21.【答案】见试题解答内容
【分析】根据等式的性质:等式的两边同时乘一个相同的数,等式仍然成立;所以是正确的.
【解答】解:等式的两边同时乘一个相同的数,等式仍然成立;
所以,方程左右两边同时乘一个相同的数,左右两边仍然相等是正确的.
故答案为:√.
【分析】本题考查了等式的意义,本题中只说了乘法,没有说除法,所以不用考虑0除外.
22.【答案】×
【分析】平均数是反映一组数据的平均水平,并不能反应这组数据中各个数据的大小,它比最小的数大一些,比最大的数小一些,在它们之间;由此即可进行判断。
【解答】解:平均水深140厘米,并不能反映出整个水域中每一处的水深都是140厘米,有的地方会比140厘米深的多,可能超过152厘米,有的地方会浅一些,
所以身高是152厘米的乐乐去平均水深为140厘米的水域游泳,可能有危险。
因此题干中的结论是错误的。
故答案为:×。
【分析】此题考查了平均数的意义在实际生活中的灵活应用。
23.【答案】√
【分析】根据小数的基本性质可知:0.5=0.50;但0.5的计数单位是0.1,0.50的计数单位是0.01,它们的计数单位不同,据此解答。
【解答】解:0.5和0.50的大小相等,计数单位不同,原题说法正确。
故答案为:√。
【分析】解决本题要先根据小数的基本性质判断小数的大小,再比较两个小数的计数单位即可。
24.【答案】×
【分析】根据三角形的面积公式:S=ah÷2,面积相等的两个三角形,它们的底和高不一定相等。据此判断。
【解答】解:面积相等的两个三角形,它们的底和高不一定相等。
因此题干中的结论是错误的。
故答案为:×。
【分析】此题考查的目的是理解掌握三角形的面积公式及应用。
25.【答案】见试题解答内容
【分析】华罗庚说:“数学是中国人民擅长的学科”,东汉初(公元1世纪),我国第一部准数学书《九章算术》中出现了“正负术”.
【解答】解:最早认识负数的国家是中国,所以本题说法正确;
故答案为:√.
【分析】本题属于数学常识,要熟记.
26.【答案】见试题解答内容
【分析】一个来回是2次,用4乘2求出游的次数,再乘35就是一共游的米数.据此解答.
【解答】解:35×4×2
=140×2
=280(米)
所以题干说法错误.
故答案为:×.
【分析】本题属于连乘应用题,需要注意的是一个来回是2次.
27.【答案】√
【分析】先解方程5x﹣4=38,然后将x的值代入算式4x+1.5,看结果是否等于35.1即可。
【解答】解:5x﹣4=38
5x﹣4+4=38+4
5x÷5=42÷5
x=8.4
当x=8.4时,4x+1.5=4×8.4+1.5=35.1
原题说法正确。
故答案为:√。
【分析】本题考查了方程的解法和利用代入法求值,属于基础知识,需熟练掌握。
28.【答案】√
【分析】根据长方形、平行四边形的周长、面积的意义可知,把一个长方形框架拉成一个平行四边形,4条边的长度不变,所以它的周长不变,平行四边形的高小于长方形的宽,所以面积变小。据此判断。
【解答】解:把一个长方形框架拉成一个平行四边形,4条边的长度不变,所以它的周长不变,平行四边形的高小于长方形的宽,所以面积变小。
因此题干中的结论是正确的。
故答案为:√。
【分析】此题考查的目的是理解掌握长方形、平行四边形的周长、面积的意义及应用。
29.【答案】×
【分析】平行四边形的面积=底×高,两个平行四边形的面积相等,不能证明它们的底和高都相等,只能说底和高的乘积相等,据此判断即可.
【解答】解:由平行四边形的面积公式知,只要底和高的乘积相等就说明面积相等,
但是两个长方形的底不一定相等,高也不一定相等,
可见上面的说法是错误的,
故答案为:×.
【分析】此题主要考查平行四边形的面积的计算方法的灵活应用.
四.计算题(共3小题)
30.【答案】0.07;3;30;0.52;32;100;3.04;0.8;6.95;9;5.6;12.87。
【分析】根据小数加、减、乘、除法的计算法则,直接进行口算即可。
【解答】解:
0.42÷6=0.07 3.6÷1.2=3 0.03×1000=30 2﹣1.48=0.52
3.2÷0.1=32 8×12.5=100 2.34+0.7=3.04 0.24÷0.3=0.8
1.45+5.5=6.95 0.09÷0.01=9 0.4×2.8×5=5.6 1.36+2.87+8.64=12.87
【分析】此题考查的目的是理解掌握小数四则运算的计算法则,并且能够正确熟练地进行口算,提高口算能力。
31.【答案】2.05;0.34;33.;31.2562。
【分析】根据小数乘法、除法的计算法则,直接列竖式计算。
【解答】解:(1)2.091÷1.02=2.05
(2)0.2223÷0.65≈0.34(精确到百分位)
(3)1.5÷0.045=33.(用循环小数表示)
(4)3.17×9.86=31.2562
【分析】此题考查的目的是理解掌握小数乘法、小数除法的计算法则,并且能够正确熟练地用竖式计算。
32.【答案】3.2;3.95;76。
【分析】(1)同级运算,按照运算顺序从左到右依次计算;
(2)先计算小数除法,再计算小数减法;
(3)提取相同的小数7.6,利用乘法分配律进行简便计算。
【解答】解:1.08×0.8÷0.27
=0.864÷0.27
=3.2
8.45﹣7.2÷1.6
=8.45﹣4.5
=3.95
7.6×7.3+2.7×7.6
=7.6×(7.3+2.7)
=7.6×10
=76
【分析】本题考查了小数四则混合运算,注意能简算的要简算。
五.操作题(共2小题)
33.【答案】
【分析】根据梯形面积=(上底+下底)×高÷2,先用面积×2,再确定上下底的和、以及高,根据已知的下底推算出上底,画出直角梯形即可。
作旋转一定角度后的图形步骤:(1)根据题目要求,确定旋转中心、旋转方向和旋转角;(2)分析所作图形,找出构成图形的关键点;(3)找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;(4)作出新图形,顺次连接作出的各点即可。
【解答】解:9×2=18=6×3,6﹣4=2(cm),画出的直角梯形,上底2cm,下底4cm,高3cm即可。
(画法不唯一)
【分析】关键是掌握梯形面积公式,决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
34.【答案】(1)画法不唯一。
(2)24平方厘米。
【分析】(1)根据梯形的特征,梯形的上下底互相平行,据此作图即可。
(2)根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答。
【解答】解:(1)作图如下:画法不唯一。
(2)(5+7)×4÷2
=12×4÷2
=48÷2
=24(平方厘米)
答:这个梯形的面积是24平方厘米。
【分析】此题考查的目的是理解掌握剃须刀画法,梯形面积公式的灵活运用,关键是熟记公式。
六.应用题(共9小题)
35.【答案】284厘米。
【分析】根据长方体的棱的特征,12条棱中互相平行的一组4条棱的长度相等,它的棱长总和=(长+宽+高)×4;由此解答。
【解答】解:(36+15+20)×4
=71×4
=284(厘米)
答:至少需要284厘米长的胶带。
【分析】此题主要考查长方体的特征及棱长总和的计算方法。
36.【答案】64公顷。
【分析】设清远奥林匹克体育馆占地面积是x公顷,则3x与20.8的差等于171.2,根据这个等量关系列方程解答。
【解答】解:设清远奥林匹克体育馆占地面积是x公顷。
3x﹣20.8=171.2
3x﹣20.8+20.8=171.2+20.8
3x=192
3x÷3=192÷3
x=64
答:清远奥林匹克体育馆占地面积是64公顷。
【分析】列方程解决实际问题的关键是找准题目中的等量关系。
37.【答案】21.5厘米。
【分析】放入一块棱长为30厘米的正方体铁块后,水的体积会增加了这个正方体的体积;根据正方体的体积公式V=a3,先求出正方体的体积,用这个体积除以玻璃缸的底面积就是水的高度,然后用35厘米减去水的高度即可求出把铁块从缸中取出缸中的水深。
【解答】解:35﹣30×30×30÷(50×40)
=35﹣13.5
=21.5(厘米)
答:把铁块从缸中取出,缸中的水深是21.5厘米。
【分析】本题主要考查长方体和正方体的体积计算公式,本题关键是要理解水增加的体积就是正方体的体积。
38.【答案】220个。
【分析】设这个停车场充电桩位有x个,则普通车位有5.5x个,合起来共260个,根据这个等量关系列方程解答。
【解答】解:设这个停车场充电桩位有x个,则普通车位有5.5x个。
x+5.5x=260
6.5x=260
6.5x÷6.5=260÷6.5
x=40
当x=40时,5.5x=5.5×40=220
答:这个停车场普通车位有220个。
【分析】列方程解决实际问题的关键只找准题目中的等量关系。
39.【答案】87千米。
【分析】设货车每小时行驶x千米,根据货车的速度×时间+落后的距离=客车的速度×时间,列出方程解答即可。
【解答】解:设货车每小时行驶x千米。
10x+80=95×10
10x+80﹣80=950﹣80
10x÷10=870÷10
x=87
答:货车每小时行驶87千米。
【分析】列方程解决问题的关键是找准题目中的等量关系。
40.【答案】(1)62000元;
(2)2000吨。
【分析】(1)根据无盖长方体的表面积公式:S=ab+2ah+2bh,把数据代入公式求出贴瓷砖的面积;然后再乘每平方米瓷砖的价格即可。
(2)根据长方体的体积公式:V=abh,把数据代入公式水深1.6米时,游泳池内水的体积,然后再乘每立方米水的质量即可。
【解答】解:(1)(50×25+50×2×2+25×2×2)×40
=(1250+200+100)×40
=1550×40
=62000(元)
答:一共需要62000元。
(2)50×25×1.6×1
=1250×1.6×1
=2000(吨)
答:在游泳池中注入2000吨水,才能使水深1.6米。
【分析】此题主要考查长方体的表面积公式、体积公式在实际生活中的应用,关键是熟记公式。
41.【答案】把2盒磁带的最大重合摞起来进行包装最节省包装纸,298平方厘米。
【分析】根据长方体表面积的意义可知,要想最节省包装纸,也就是把2盒磁带的最大重合摞起来进行包装,根据长方体的表面积公式:S=(ab+ah+bh)×2,把数据代入公式解答。
【解答】解:2×2=4(厘米)
(11×7+11×4+7×4)×2
=(77+44+28)×2
=149×2
=298(平方厘米)
答:把2盒磁带的最大重合摞起来进行包装最节省包装纸,需要298平方厘米。
【分析】此题主要考查长方体表面积公式的灵活运用,关键是熟记公式。
42.【答案】0.5千克。
【分析】根据梯形的面积=(上底+下底)×高÷2,把数据代入公式求出这块铁皮两面的面积,然后再乘每平方米用油漆的质量即可。
【解答】解:(1.5+2.1)×0.5÷2×2×0.26
=3.6×0.5÷2×2×0.26
=1.8×0.26
=0.468
≈0.5(千克)
答:需要准备0.5千克油漆。
【分析】此题主要考查梯形面积公式的灵活运用,关键是熟记公式。
43.【答案】28.775千克。
【分析】根据六(3)班平均体重为33.5千克,以超出平均体重为正,低于平均体重为负,分别用33.5加上四人的体重记数,先求出四人的各自体重,再求出它们的平均体重是多少千克即可。
【解答】解:小红的实际体重为:
33.5+4.4=37.9(千克)
小丽的实际体重为:
33.5﹣26=7.5(千克)
小超的实际体重为:
33.5+6.6=40.1(千克)
小敏的实际体重为:
33.5﹣3.9=29.6(千克)
(37.9+7.5+40.1+29.6)÷4
=115.1÷4
=28.775(千克)
答:四人的平均体重是28.775千克。

延伸阅读:

标签:

上一篇:河北省唐山市滦南县2020-2021年 小学英语四年级下册期中测试 图片版(无答案)

下一篇:Module 2 Unit 3 What animal is it? 知识点梳理+练习(无答案)