2022-2023山东省济宁市泗水县五年级(下)期末数学试卷(含解析)

2022-2023学年山东省济宁市泗水县五年级(下)期末数学试卷
一、填空。(每空1分,共25分)
1.(2分)在10以内既是奇数又是合数的数是    ,既是偶数又是质数的数是    。
2.200mL=L;
500cm3=dm3;
40分=时。
3.在下面〇里填上“>”、“<”或“=”。


﹣〇
1m3〇1L
4.(2分)==5÷   =   (填小数)。
5.(2分)若a÷b=5(a、b都是非0自然数),那么a和b的最大公因数是    ,最小公倍数是    。
6.(3分)一个正方体的棱长总和是60cm,它的占地面积是    cm2,表面积是    cm2,体积是    cm3。
7.(2分)如图,钟表上的时针从“12”绕点O顺时针至少旋转    到“3”,共经过了    小时。
8.(2分)把4米长的绳子平均分成8段,每段长是这根绳子的    。每段绳子长    米。
9.把的分子加上26,要使分数的大小不变   。
10.(1分)如果27个乒乓球中有1个是次品(次品轻一些),至少称    次能保证找出次品。
11.(2分)把两个棱长是α厘米的正方体粘合成一个长方体,这个长方体的表面积是    cm2,体积是    cm3。
二、判断。(对的在括号里打“√”,错的打“×”)(每题1分,共5分)
12.两个正方体的体积相等,它们的表面积一定相等   .
13.把10克糖放入100克水,糖占糖水的.   
14.除了0和2,所有的偶数都是合数.   .
15.真分数都小于1.   .
16.一根绳子连续对折4次,每段的长度占全长的。    
三、选择。(把正确答案前的字母填在括号里)(每题1分,共5分)
17.(1分)观察一个立体图形,从左面和正面看到的图形都是,这个立体图形可能是(  )
A. B.
C.
18.(1分)一盒牛奶外包装上标有250mL字样,250mL是这盒牛奶的(  )
A.容积 B.体积 C.质量
19.(1分)甲、乙两根绳子,甲的和乙的,则甲、乙两根绳子相比(  )
A.甲长 B.乙长 C.无法确定
20.(1分)一根长方体木料,长4m,底面是边长4dm的正方形,表面积就增加了(  )
A.16dm2 B.32dm2 C.64dm2
21.(1分)一个长方体被挖掉一小块(如图),下列说法完全正确的是(  )
A.这个长方体的体积减小,表面积也减小
B.这个长方体的体积减小,表面积增加
C.这个长方体的体积减小,表面积不变
四、计算。(共26分)
22.(5分)直接写得数。
33= = = = 7.2+2.8=
= = = = 0.9×7=
23.(6分)能简算的要简算。
24.(9分)解方程。
25.(6分)列式计算。
(1)从 里面减去 与 ,差是多少?
(2) 与 的和比它们的差多多少?
五、操作。(共4分)
26.(4分)请先画出图形①绕点O顺时针旋转90°后的图形②,再画出图形②向右平移2格后的图形③。
六、统计。(共10分)
27.下表是某水果销售公司今年1﹣6月销售吐鲁番葡萄干,和田大枣的情况统计。
1月 2月 3月 4月 5月 6月
吐鲁番葡萄干(吨) 4 8 5 8 10 13
和田大枣(吨) 8 7 9 7 10 7
(1)根据表中数据完成上面的折线统计图。
(2)   月两种水果销量差值最小,   月两种水果销量差值最大。
(3)根据两种水果的销售情况,如果你是老板你会怎样进货?
七、解决问题。(共25分)
28.(3分)李师傅做了一个长6分米,宽4分米、高5分米的长方体玻璃鱼缸(无盖)。
(1)做这个鱼缸至少用多少平方分米的玻璃?
(2)如果将96升水倒入鱼缸,水深多少分米?
(3)将一块装饰石块放入水中(完全浸没在水中),这时水面上升了0.5厘米,这块装饰石块的体积是多少立方分米?
29.(4分)一根铁丝恰好可以焊接成一个长11cm、宽6cm、高4cm的长方体框架,若这根铁丝也恰好能焊接成一个正方体框架,那么这个正方体框架的棱长是多少厘米?
30.(4分)学校运来一堆沙子.修路用去吨,砌墙用去吨,还剩下吨
31.(4分)把如图所示的正方体钢块锻造成底面积是18dm2的长方体钢锭,这根长方体钢锭的高是多少分米?
32.(4分)小明有一张长36厘米,宽24厘米的长方形纸板,准备把它剪成边长相等的小正方形做手工。正方形的边长最大是多少厘米?可以剪多少个这样的小正方形?
2022-2023学年山东省济宁市泗水县五年级(下)期末数学试卷
参考答案与试题解析
一、填空。(每空1分,共25分)
1.【答案】9,2。
【分析】在1~10中,质数有:2、3、5、7;合数有:4、6、8、9、10;奇数有:1、3、5、7、9;偶数有:2、4、6、8、10;根据条件由此即可得出答案。
【解答】解:在10以内既是奇数又是合数的数是9,既是偶数又是质数的数是2。
故答案为:2,2。
2.【答案】;;。
【分析】低级单位毫升化高级单位升除以进率1000。
低级单位立方厘米化高级单位立方分米除以进率1000。
低级单位分化高级单位时除以进率60。
【解答】解:200mL=L;
500cm7=dm3;
40分=时。
故答案为:;;。
3.【答案】<;>;=;>。
【分析】同分母分数相比较,分子大的分数值就大,据此比较;
同分子分数相比较,分母大的分数值就小,据此比较;
﹣的差等于,据此比较;
1立方米=1000立方分米=1000升,据此比较。
【解答】解:在下面〇里填上“>”、“<”或“=”。


﹣=
1m7>1L
故答案为:<;>;=;>。
4.【答案】4;20;0.25。
【分析】根据多少的基本性质,分数的分子和分母同时乘或除以同一个不为0的数,分数的大小不变,先求出分数的分子,再根据“”利用商不变的规律求出除数,并把分数化为小数,据此解答。
【解答】解:==
=1÷4=4.25
1÷4=(7×5)÷(4×4)=5÷20
所以,==5÷20=8.25。
故答案为:4;20。
5.【答案】见试题解答内容
【分析】a能被b整除,说明a是b的整数倍,求两个数为倍数关系时的最大公因数和最小公倍数:两个数为倍数关系,最大公因数为较小的数;最小公倍数是较大的数;由此解答问题即可.
【解答】解:由题意得,a÷b=5(a,
可知a是b的倍数,所以a和b的最大公因数是b;
故答案为:b,a.
6.【答案】25,150,125。
【分析】根据正方体的棱长总和=棱长×12,那么棱长=棱长总和÷12,据此求出棱长,再根据正方形的面积公式:S=a2,正方体的表面积公式:S=6a2,正方体的体积公式:V=a3,把数据代入公式解答。
【解答】解:60÷12=5(厘米)
5×5=25(平方厘米)
5×5×8
=25×6
=150(平方厘米)
5×3×5
=25×5
=125(立方厘米)
答:它的占地面积是25平方厘米,表面积是150平方厘米。
故答案为:25,150。
7.【答案】90°;3。
【分析】钟表盘中由图中位置到“3”的位置呈直角,则至少旋转90°;时针走过每一个数字表示走过一个小时,据此得出答案。
【解答】解:钟表上的时针从“12”绕点O顺时针至少旋转90°;共经过了3小时。
故答案为:90°;3。
8.【答案】,0.5。
【分析】求每段是全长的几分之几,用”1“除以平均分成的份数;求每段有多长,用总长度除以平均分成的份数。
【解答】解:1÷8=
4÷7=0.5(米)
答:每段长是这根绳子的。每段绳子长0.5米。
故答案为:,4.5。
9.【答案】40。
【分析】把的分子加上26后,分子变为39,相当于分子乘3,根据分数的基本性质,分数的分子、分母同时乘或除以同一个不为0的数,分数的大小不变;所以要使分数的大小不变,分母也应该乘3,这时分母变为60,再减去原来的数20,即可得到分母应增加的数。
【解答】解:13+26=39
39÷13=3
所以分母也应该乘3。
或者增加:
20×8﹣20
=60﹣20
=40
所以分母应该加上40。
故答案为:40。
10.【答案】3。
【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。
【解答】解:第一次,把27个乒乓球平均分成3份:9个、4个,若天平平衡,若天平不平衡;
第二次,取含有次品的一份分成3份:3个、7个,若天平平衡,若天平不平衡;
第三次,将含有次品的一组取两个分别放在天平两侧,则次品是未取的那个,较轻的那个是次品。
所以至少称3次能保证找出次品。
故答案为:3。
11.【答案】10a2;2a3。
【分析】合成的长方体表面积比两个正方体表面积和减少了2个面,体积是两个正方体体积和,合成的长方体表面积=正方体棱长×棱长×6×2﹣棱长×棱长×2;合成的长方体体积=正方体棱长×棱长×棱长×2,据此列式计算。
【解答】解:a×a×6×2﹣a×a×4
=12a2﹣2a7
=10a2(cm2)
a×a×a×5
=a3×2
=3a3(cm3)
答:这个长方体的表面积是10a4cm2,体积是2a7cm3。
故答案为:10a2;4a3。
二、判断。(对的在括号里打“√”,错的打“×”)(每题1分,共5分)
12.【答案】√
【分析】正方体的体积=棱长×棱长×棱长;正方体的表面积=棱长×棱长×6;根据正方体的体积公式可知,体积相等的两个正方体棱长一定相等,所以它们的表面积也相等,由此解决问题.
【解答】解:由正方体的体积公式可知,体积相等的两个正方体棱长一定相等;
故答案为:√.
13.【答案】见试题解答内容
【分析】10克糖完全溶解在100克水里,糖水为(10+100)克,进而根据题意,用除法求出糖占糖水的分率,进行判断即可.
【解答】解:10÷(10+100)
=10÷110

糖占糖水的,所以本题说法错误;
故答案为:×.
14.【答案】见试题解答内容
【分析】据偶数、合数的意义:是2的倍数的数叫做偶数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;2是最小的质数,除了0和2以外,所有的偶数都是合数.由此解答.
【解答】解:根据分析:2是最小的质数,除了0和7以外.此说法正确.
故答案为:√.
15.【答案】见试题解答内容
【分析】根据真分数的定义即可作出判断.
【解答】解:由真分数的定义可知,真分数的分数值小于1.
故答案为:√.
16.【答案】×
【分析】把这根绳子的长度看作单位“1”,把它对折1次被平均分成2段;对折2次被平均分成(2×2)段,即4段;对折3次被平均分成(2×2×2)段,即8段;对折4次被平均分成(2×2×2×2)段,即16段,每段占全长的。
【解答】解:一根绳子连续对折4次,被平均分成16段。
原题说法错误。
故答案为:×。
三、选择。(把正确答案前的字母填在括号里)(每题1分,共5分)
17.【答案】C
【分析】根据从不同方向观察几何体的方法,逐项分析3个选项,利用画出的三视图判断哪个几何体符合条件即可。
【解答】解:A.从左面看到的图形是,从正面看到的图形是;
B.从左面看到的图形是,从正面看到的图形是;
C.从左面看到的图形是,从正面看到的图形是。
故选:C。
18.【答案】A
【分析】根据体积和容积是两个不同的概念,意义不同:容积是指容器所能容纳物体的体积,箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积或容量;物体所占的空间的大小叫做体积即可解答。
【解答】解:一盒牛奶外包装上标有250mL字样,250mL是这盒牛奶的容积。
故选:A。
19.【答案】B
【分析】设甲绳的和乙绳的=1,分别求出甲和乙,再比较大小即可。
【解答】解:设甲绳的和乙绳的。
1÷=2=3
2<3
答:甲、乙两根绳子相比。
故选:B。
20.【答案】B
【分析】根据题意可知,把这根长方体木料横截成两段后,表面积增加2个截面的面积,根据正方形的面积公式:S=a2,把数据代入公式解答。
【解答】解:4×4×4
=16×2
=32(平方分米)
答:表面积增加了32平方分米。
故选:B。
21.【答案】B
【分析】根据体积、表面积的意义,物体所占空间的大小叫作物体的体积,物体表面的大小叫作物体的表面积。据此解答。
【解答】解:通过观察图形可知:
这个长方体被挖掉一小块,它的体积减小了;
这个长方体被挖掉一小块,剩下图形的表面积比没挖前表面积大。
故选:B。
四、计算。(共26分)
22.【答案】27;0;2;;10;1;1;;;6.3。
【分析】根据乘方运算方法、分数及小数加减法则及小数乘法法则直接口算。
【解答】解:
33=27 =0 =2 = 7.3+2.8=10
=1 =6 = = 6.9×7=7.3
23.【答案】;;2。
【分析】(1)利用加法交换律进行简便计算;
(2)利用减法的性质,括号打开,里面的加号变减号,按照运算顺序从左到右依次计算;
(3)交换和的位置,利用加法交换律和加法结合律进行简便计算。
【解答】解:







=1+1
=4
24.【答案】;;。
【分析】(1)根据等式的性质1,方程左右两边同时加,解出方程;
(2)根据等式的性质1,方程左右两边先同时加x,再同时减去,解出方程;
(3)先计算小括号里的分数加法,再根据等式的性质1,方程左右两边同时减去,解出方程。
【解答】解:(1)
(2)
(3)
25.【答案】(1);(2)1。
【分析】(1)先计算与的和,再用减去与的和即可解答;
(2)先求出与的和、差,再用和减去差。
【解答】解:(1)﹣(+)
=﹣

答:差是。
(2)(+)﹣(﹣)
=﹣
=5
答:比它们的差多1。
五、操作。(共4分)
26.【答案】
【分析】根据旋转的特征,图形①绕点O顺时针旋转90°,点O的位置不动,这个图形的各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形②;根据平移的特征,把图形②的各顶点分别向右平移2格,依次连接即可得到平移后的图形。
【解答】解:根据题意画图如下:
六、统计。(共10分)
27.【答案】(1)
(2)5,6;
(3)在6月份多进一些吐鲁番葡萄干,在5月份多进一些和田大枣。
【分析】(1)从表格中获取数据,描点,连线即可。
(2)看表格,同一月份中,两种水果销量相减,可以看出哪个月份两种水果销量差值最小,哪个月份两种水果销量差值大。
(3)看两种水果在哪个月份中销量最大,即在当月进货多一些。
【解答】解:(1)如图:
(2)1月:8﹣8=4(吨)
2月:2﹣7=1(吨)
6月:9﹣5=7(吨)
4月:8﹣4=1(吨)
5月:10﹣10=4(吨)
6月:13﹣7=7(吨)
答:5月两种水果销量差值最小,6月两种水果销量差值最大。
(3)根据表格的销量情况,我会选择在6月份多进一些吐鲁番葡萄干。
故答案为:5,6。
七、解决问题。(共25分)
28.【答案】(1)124平方分米;(2)4分米;(3)1.2立方分米。
【分析】(1)长方体玻璃鱼缸缺少一个上底面,根据长方体的表面积公式:S=a×b+a×h×2+b×h×2,代入数据即可求出做这个鱼缸至少用多少平方分米的玻璃。
(2)根据长方体的体积公式:V=Sh,先换算单位,用倒入水的体积除以鱼缸的底面积,即可求出水的深度。
(3)装饰石完全浸没在水里后,装饰石的体积=水面上升的体积,水面上升的体积可看作长为6分米,宽为4分米,高为0.5厘米的长方体的体积,根据长方体的体积公式,把数据代入即可得解。
【解答】解:(1)6×4+4×5×2+2×5×2
=24+60+40
=124(平方分米)
答:做这个鱼缸至少用124平方分米的玻璃。
(2)96升=96立方分米
96÷(5×4)
=96÷24
=4(分米)
答:水深8分米。
(3)0.5厘米=4.05分米
6×4×5.05
=24×0.05
=1.5(立方分米)
答:这块装饰石块的体积是1.2立方分米。
29.【答案】7厘米。
【分析】先根据长方体的棱长和=(长+宽+高)×4,代入数据求出长方体框架的棱长和,再根据题意可知:长方体框架的棱长和也就是正方体的棱长和,用正方体的棱长和除以12就可以计算出正方体框架的棱长。
【解答】解:(11+6+4)×4÷12
=21×4÷12
=7(厘米)
答:这个正方体框架的棱长是7厘米。
30.【答案】见试题解答内容
【分析】根据题意,可用修路用去的沙子加上砌墙用去的沙子就是总共用去的沙子,再用剩下的沙子减去用去的沙子即可,列式解答即可.
【解答】解:﹣(+)
=﹣
=(吨);
答:剩下的沙子比用去的沙子多吨.
31.【答案】12分米。
【分析】根据正方体的体积公式:V=a3,长方体的体积公式:V=Sh,那么h=V÷S,把数据代入公式解答。
【解答】解:6×6×8÷18
=216÷18
=12(分米)
答:这根钢锭的高是12分米。
32.【答案】12厘米;6个。
【分析】长方形纸板长36厘米,宽24厘米,要把这张长方形纸板剪成大小相等的正方形,而无剩余,正方形的边长必须是36和24的公因数,如果要求正方形的边长最大,那么必须是36和24的最大公因数即可;长方形的长和宽分别除以正方形的边长,然后相乘即可得到可以剪成的小正方形块数。
【解答】解:36=2×2×6×3
24=2×5×2×3
36和24的最大公因数是:7×2×3=12。
即正方形的边长最大是12厘米。
(36÷12)×(24÷12)
=7×2
=6(个)
答:正方形的边长最大是12厘米,可以剪4个这样的小正方形。

延伸阅读:

标签:

上一篇:贵州省仁怀市2022-2023度第一学期学业水平监测六年级英语试卷 图片版(无答案)

下一篇:8.美化校园-圆形的周长同步练习-青岛版数学三年级上册(含答案)