江苏省淮安市高中校协作体2023年高考全国统考预测密卷数学试卷(含解析)

2023年高考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,若,则等于( )
A.3 B.4 C.5 D.6
2.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于( )
A. B. C. D.
3.已知a,b是两条不同的直线,α,β是两个不同的平面,且a α,b β,aβ,bα,则“ab“是“αβ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知数列为等差数列,为其前 项和,,则( )
A. B. C. D.
5.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.已知函数,以下结论正确的个数为( )
①当时,函数的图象的对称中心为;
②当时,函数在上为单调递减函数;
③若函数在上不单调,则;
④当时,在上的最大值为1.
A.1 B.2 C.3 D.4
7.已知集合,则元素个数为( )
A.1 B.2 C.3 D.4
8.已知,函数在区间内没有最值,给出下列四个结论:
①在上单调递增;

③在上没有零点;
④在上只有一个零点.
其中所有正确结论的编号是( )
A.②④ B.①③ C.②③ D.①②④
9.若向量,则( )
A.30 B.31 C.32 D.33
10.数列满足:,,,为其前n项和,则( )
A.0 B.1 C.3 D.4
11.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为( )
A.2 B. C. D.3
12.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列满足对任意,若,则数列的通项公式________.
14.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.
15.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.
16.在中,角的平分线交于,,,则面积的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.
18.(12分)已知数列的前n项和为,且n、、成等差数列,.
(1)证明数列是等比数列,并求数列的通项公式;
(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
19.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:
甲公司员工:410,390,330,360,320,400,330,340,370,350
乙公司员工:360,420,370,360,420,340,440,370,360,420
每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;
(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;
(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.
20.(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.
(1)若,求直线与轴的交点坐标;
(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.
21.(12分)已知抛物线:()的焦点到点的距离为.
(1)求抛物线的方程;
(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.
22.(10分)已知函数.
(1)求不等式的解集;
(2)若不等式在上恒成立,求实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
先求出,再由,利用向量数量积等于0,从而求得.
【详解】
由题可知,
因为,所以有,得,
故选:C.
【点睛】
该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.
2、A
【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.
【详解】
由题知是等腰直角三角形且,是等边三角形,
设中点为,连接,,可知,,
同时易知,,
所以面,故即为与面所成角,
有,
故.
故选:A.
【点睛】
本题主要考查了空间几何题中线面夹角的计算,属于基础题.
3、D
【解析】
根据面面平行的判定及性质求解即可.
【详解】
解:a α,b β,a∥β,b∥α,
由a∥b,不一定有α∥β,α与β可能相交;
反之,由α∥β,可得a∥b或a与b异面,
∴a,b是两条不同的直线,α,β是两个不同的平面,且a α,b β,a∥β,b∥α,
则“a∥b“是“α∥β”的既不充分也不必要条件.
故选:D.
【点睛】
本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.
4、B
【解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.
【详解】
由等差数列的性质可得,
.
故选:B.
【点睛】
本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.
5、D
【解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【详解】
,,对应点为,在第四象限.
故选:D.
【点睛】
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
6、C
【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.
【详解】
①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.
②由题意知.因为当时,,
又,所以在上恒成立,所以函数在上为单调递减函数,正确.
③由题意知,当时,,此时在上为增函数,不合题意,故.
令,解得.因为在上不单调,所以在上有解,
需,解得,正确.
④令,得.根据函数的单调性,在上的最大值只可能为或.
因为,,所以最大值为64,结论错误.
故选:C
【点睛】
本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.
7、B
【解析】
作出两集合所表示的点的图象,可得选项.
【详解】
由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,
故选:B.
【点睛】
本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.
8、A
【解析】
先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.
【详解】
因为函数在区间内没有最值.
所以,或
解得或.
又,所以.
令.可得.且在上单调递减.
当时,,且,
所以在上只有一个零点.
所以正确结论的编号②④
故选:A.
【点睛】
本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.
9、C
【解析】
先求出,再与相乘即可求出答案.
【详解】
因为,所以.
故选:C.
【点睛】
本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.
10、D
【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.
【详解】
由已知,①,所以②,①+②,得,
从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,
.
故选:D.
【点睛】
本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.
11、A
【解析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.
【详解】
由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,
所以圆心M到渐近线的距离为,故,
所以离心率为.
故选:A.
【点睛】
本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.
12、C
【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.
【详解】
由几何体的三视图可得,
几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,
故此几何体的体积为圆柱的体积减去三棱柱的体积,
即,
故选C.
【点睛】
本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.
【详解】
由,得
,数列是等比数列,首项为2,公比为2,
,,

,满足上式,.
故答案为:.
【点睛】
本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.
14、
【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
【详解】
八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。
故答案为:。
【点睛】
本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。
15、
【解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.
【详解】
解:程序的功能是计算,
若输出的实数的值为,
则当时,由得,
当时,由,此时无解.
故答案为:.
【点睛】
本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.
16、15
【解析】
由角平分线定理得,利用余弦定理和三角形面积公式,借助三角恒等变化求出面积的最大值.
【详解】
画出图形:
因为,,由角平分线定理得,
设,则
由余弦定理得:

当且仅当,即时取等号
所以面积的最大值为15
故答案为:15
【点睛】
此题考查解三角形面积的最值问题,通过三角恒等变形后利用均值不等式处理,属于一般性题目.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)证明见解析.
【解析】
(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;
(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.
【详解】
(1)依题意得,解得
即椭圆:;
(2)设点,,
其中,
由,得,
即,
注意到,
于是,
因此,满足
由的任意性知,,,即直线恒过一个定点.
【点睛】
本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.
18、(1)证明见解析,;(2)11202.
【解析】
(1)由n,,成等差数列,可得,,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;
(2)由(1)中的可求出,根据和求出数列,中的公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.
【详解】
(1)证明:因为n,,成等差数列,所以,①
所以.②
①-②,得,所以.
又当时,,所以,所以,
故数列是首项为2,公比为2的等比数列,
所以,即.
(2)根据(1)求解知,,,所以,
所以数列是以1为首项,2为公差的等差数列.
又因为,,,,,,,,
,,,
所以
.
【点睛】
本题考查等比数列的定义,考查分组求和,属于中档题.
19、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)
【解析】
(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;
(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;
(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费.
【详解】
解:(1)由题意知
甲公司员工在这10天投递的快递件数的平均数为
.
众数为330.
(2)设乙公司员工1天的投递件数为随机变量,则
当时,
当时,
当时,
当时,
当时,
的分布列为
204 219 228 273 291
(元);
(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为
(元)
由(2)估计乙公司被抽取员工在该月所得的劳务费为
(元).
【点睛】
本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.
20、(1)(2)见解析
【解析】
(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;
(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分和说明.
【详解】
解:本题考查直线与椭圆的位置关系的综合,
(1)由题知,,则.因为,所以,
则直线的方程为,联立,可得
故.则,直线的方程为.令,
得,故直线与轴的交点坐标为.
(2)证明:因为,,所以.设点,则.

当时,设,则,此时直线与轴垂直,
其直线方程为,
直线的方程为,即.
在方程中,令,得,得交点为,显然在椭圆上.
同理当时,交点也在椭圆上.
当时,可设直线的方程为,即.
直线的方程为,联立方程,
消去得,化简并解得.
将代入中,化简得.
所以两直线的交点为.
因为

又因为,所以,
则,
所以点在椭圆上.
综上所述,直线与直线的交点在椭圆上.
【点睛】
本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,代入曲线方程验证点在曲线.本题考查了学生的运算求解能力.
21、(1)(2)
【解析】
(1)因为,可得,即可求得答案;
(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.
【详解】
(1),

解得,
抛物线的方程为.
(2)由题意可知,、的斜率都存在,分别设为和,切点,

过点的抛物线的切线:,
由,消掉,
可得,
,即,
解得,,
又由,
得,
,,
同理可得,,
,,

切线的方程为,
点到切线的距离为,

即的面积为.
【点睛】
本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式
22、(1);(2)
【解析】
(1)分类讨论去绝对值号,即可求解;
(2)原不等式可转化为在R上恒成立,分别求函数与的最小值,根据能同时成立,可得的最小值,即可求解.
【详解】
(1)①当时,不等式可化为,得,无解;
②当-2≤x≤1时,不等式可化为得x>0,故0③当x>1时,不等式可化为,得x<2,故1综上,不等式的解集为
(2)由题意知在R上恒成立,
所以
令,则当时,
又当时,取得最小值,且

所以当时,与同时取得最小值.
所以
所以,
即实数的取值范围为
【点睛】
本题主要考查了含绝对值不等式的解法,分类讨论,函数的最值,属于中档题.

延伸阅读:

标签:

上一篇:江苏省海安市2023届高三第一次模拟考试数学试卷(含解析)

下一篇:五年2019-2023高考化学真题按知识点分类汇编-5氧化还原反应基本概念(含解析)