2023年高考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,若,则实数的值可以为( )
A. B. C. D.
2.已知命题,那么为( )
A. B.
C. D.
3.已知非零向量、,若且,则向量在向量方向上的投影为( )
A. B. C. D.
4.设复数满足,则在复平面内的对应点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.已知定义在上的函数,,,,则,,的大小关系为( )
A. B. C. D.
6.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )
A.24 B.36 C.48 D.64
7.已知是的共轭复数,则( )
A. B. C. D.
8.已知向量,,若,则( )
A. B. C. D.
9.设正项等差数列的前项和为,且满足,则的最小值为
A.8 B.16 C.24 D.36
10.已知,则的大小关系是( )
A. B. C. D.
11.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则( )
A.2020 B.4038 C.4039 D.4040
12.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A.23 B.21 C.35 D.32
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数有且只有一个零点,则实数的取值范围为__________.
14.若实数,满足不等式组,则的最小值为______.
15.过圆的圆心且与直线垂直的直线方程为__________.
16.如图,已知圆内接四边形ABCD,其中,,,,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)讨论的单调性;
(2)若存在两个极值点,,证明:.
18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.
已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且, ,
(1)求数列的通项公式;
(2)设,求数列的前项和.
19.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设和交点的交点为,求 的面积.
20.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.
(Ⅰ)求证:面;
(Ⅱ)求证:平面平面;
(Ⅲ)求该几何体的体积.
21.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.
22.(10分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点.
(1)求证:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
由题意可得,根据,即可得出,从而求出结果.
【详解】
,且,,
∴的值可以为.
故选:D.
【点睛】
考查描述法表示集合的定义,以及并集的定义及运算.
2、B
【解析】
利用特称命题的否定分析解答得解.
【详解】
已知命题,,那么是.
故选:.
【点睛】
本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.
3、D
【解析】
设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.
【详解】
,由得,整理得,
,解得,
因此,向量在向量方向上的投影为.
故选:D.
【点睛】
本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.
4、C
【解析】
化简得到,得到答案.
【详解】
,故,对应点在第三象限.
故选:.
【点睛】
本题考查了复数的化简和对应象限,意在考查学生的计算能力.
5、D
【解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.
【详解】
当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.
【点睛】
本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.
6、B
【解析】
根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.
【详解】
当按照进行分配时,则有种不同的方案;
当按照进行分配,则有种不同的方案.
故共有36种不同的派遣方案,
故选:B.
【点睛】
本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.
7、A
【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.
【详解】
i,
∴a+bi=﹣i,
∴a=0,b=﹣1,
∴a+b=﹣1,
故选:A.
【点睛】
本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.
8、A
【解析】
利用平面向量平行的坐标条件得到参数x的值.
【详解】
由题意得,,
,
,
解得.
故选A.
【点睛】
本题考查向量平行定理,考查向量的坐标运算,属于基础题.
9、B
【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.
方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.
10、B
【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.
【详解】
依题意,函数与函数关于直线对称,则,
即,又,
所以,.
故选:B.
【点睛】
本题主要考查对数、指数的大小比较,属于基础题.
11、D
【解析】
计算,代入等式,根据化简得到答案.
【详解】
,,,故,
,
故.
故选:.
【点睛】
本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.
12、B
【解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.
【详解】
随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.
故选:B
【点睛】
本小题主要考查随机数表法进行抽样,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.
【详解】
当时,,故不是函数的零点;
当时,即,
令,,
,
当时,;当时,,
的单调减区间为,增区间为,
又 ,可作出的草图,如图:
则要使有唯一实数根,则.
故答案为:.
【点睛】
本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.
14、5
【解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解
【详解】
画出不等式组,表示的平面区域如图阴影区域所示,
令,则.分析知,当,时,取得最小值,且.
【点睛】
本题考查线性规划问题,属于基础题
15、
【解析】
根据与已知直线垂直关系,设出所求直线方程,将已知圆圆心坐标代入,即可求解.
【详解】
圆心为,
所求直线与直线垂直,
设为,圆心代入,可得,
所以所求的直线方程为.
故答案为:.
【点睛】
本题考查圆的方程、直线方程求法,注意直线垂直关系的灵活应用,属于基础题.
16、
【解析】
由题意可知,,在和中,利用余弦定理建立
方程求,同理求,求,代入求值.
【详解】
由圆内接四边形的性质可得,.连接BD,在中,
有.在中,.
所以,
则,所以.
连接AC,同理可得,
所以.所以.
故答案为:
【点睛】
本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)见解析
【解析】
(1)求得的导函数,对分成两种情况,讨论的单调性.
(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.
【详解】
(1).
当时,,此时在上单调递减;
当时,由解得或,∵是增函数,∴此时在和单调递减,在单调递增.
(2)由(1)知.,,,
不妨设,∴,
,
令,
∴,
∴在上是减函数,,
∴,即.
【点睛】
本小题主要考查利用导数研究函数的单调区间,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.
18、(1);(2)
【解析】
方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;
(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.
其余两个方案与方案一的解法相近似.
【详解】
解:方案一:
(1)∵数列都是等差数列,且,
,解得
,
综上
(2)由(1)得:
方案二:
(1)∵数列都是等差数列,且,
解得
,
.
综上,
(2)同方案一
方案三:
(1)∵数列都是等差数列,且.
,解得,
,
.
综上,
(2)同方案一
【点睛】
本题考查了等差数列的通项公式、前n项和公式的应用,考查了分组求和、等比求和及裂项相消法求数列的前n项和,属于中档题.
19、(1);(2)
【解析】
(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.
(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.
【详解】
(1)曲线的参数方程为(α为参数),
消去参数的的直角坐标方程为.
所以的极坐标方程为
(2)解方程组,
得到.
所以,
则或().
当()时,,
当()时,.
所以和的交点极坐标为: ,.
所以.
故的面积为.
【点睛】
本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.
20、(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ).
【解析】
(I)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(II)利用,证得平面,从而得到平面,由此证得平面平面.(III)作交于点,易得面,利用棱锥的体积公式,计算出棱锥的体积.
【详解】
(Ⅰ)取的中点,连接,则,,
故四边形为平行四边形.
故.
又面,平面,所以面.
(Ⅱ)为等边三角形,为中点,所以.又,
所以面.
又,故面,所以面平面.
(Ⅲ)几何体是四棱锥,作交于点,即面,
.
【点睛】
本小题主要考查线面平行的证明,考查面面垂直的证明,考查四棱锥体积的求法,考查空间想象能力,所以中档题.
21、(1),;(2)见解析
【解析】
(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解
【详解】
(1)将的参数方程(为参数)消去参数,得.
因为,,
所以曲线的直角坐标方程为.
(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,
则圆心到直线的距离,
所以与圆相离,且.
连接,在中,,
所以,,即的最小值为.
【点睛】
本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题
22、(1)见解析(2)
【解析】
(1)连接交于点,连接,通过证明,证得平面.
(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.
【详解】
(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;
平面平面,
平面.
(2)解:,设,则,在中,,由余弦定理得:,
.
又,平面..
平面.
如图建立的空间直角坐标系.
在等腰梯形中,可得.
则.
那么
设平面的法向量为,
则有,即,取,得.
设与平面所成的角为,则.
所以与平面所成角的正弦值为.
【点睛】
本小题主要考查线面平行的证明,考查线面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.