江苏省常州市名校2023届高三下第一次测试数学试题(含解析)

2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A. B. C. D.
2.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为(  )
A. B. C. D.
3.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )
A. B. C. D.
4.设集合,,若,则( )
A. B. C. D.
5.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )
(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)
A.0.110 B.0.112 C. D.
6.函数的大致图象为( )
A. B.
C. D.
7.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是
A. B. C. D.
8.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为( )
A. B. C.3 D.5
9.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是( )
A. B. C. D.
10. 若x,y满足约束条件的取值范围是
A.[0,6] B.[0,4] C.[6, D.[4,
11.设复数满足为虚数单位),则( )
A. B. C. D.
12.已知函数,下列结论不正确的是( )
A.的图像关于点中心对称 B.既是奇函数,又是周期函数
C.的图像关于直线对称 D.的最大值是
二、填空题:本题共4小题,每小题5分,共20分。
13.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________.
14.已知函数为上的奇函数,满足.则不等式的解集为________.
15.设,满足条件,则的最大值为__________.
16.设平面向量与的夹角为,且,,则的取值范围为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.
(I)求{an}的通项公式;
(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.
18.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.
(1)设直线,的斜率分别为,,求证:常数;
(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;
②当的内切圆的面积为时,求直线的方程.
19.(12分)已知函数,.
(1)当为何值时,轴为曲线的切线;
(2)用表示、中的最大值,设函数,当时,讨论零点的个数.
20.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.
21.(12分)设实数满足.
(1)若,求的取值范围;
(2)若,,求证:.
22.(10分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对所有的≥0,都有≤,求的最小值;
(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:
.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.
【详解】
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.
【点睛】
本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.
2、B
【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.
【详解】
如图所示:
由对称性可得:为的中点,且,
所以,
因为,所以,
故而由几何性质可得,即,
故渐近线方程为,
故选B.
【点睛】
本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.
3、A
【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.
【详解】
由,得,所以,.
由题意知,所以,.
因为,所以,所以.
所以,所以,
故选:A.
【点睛】
本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.
4、A
【解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.
【详解】
依题意可知是集合的元素,即,解得,由,解得.
【点睛】
本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.
5、C
【解析】
根据题意知,,代入公式,求出即可.
【详解】
由题意可得,因为,
所以,即.
所以这种射线的吸收系数为.
故选:C
【点睛】
本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.
6、A
【解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.
【详解】
,排除掉C,D;

,,
.
故选:A.
【点睛】
本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.
7、A
【解析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.
【详解】
为定义在上的偶函数,图象关于轴对称
又在上是增函数 在上是减函数
,即
对于恒成立 在上恒成立
,即的取值范围为:
本题正确选项:
【点睛】
本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.
8、C
【解析】
由,再运用三点共线时和最小,即可求解.
【详解】
.
故选:C
【点睛】
本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.
9、D
【解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.
【详解】
易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即
在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.
故选D.
【点睛】
本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.
10、D
【解析】
解:x、y满足约束条件,表示的可行域如图:
目标函数z=x+2y经过C点时,函数取得最小值,
由解得C(2,1),
目标函数的最小值为:4
目标函数的范围是[4,+∞).
故选D.
11、B
【解析】
易得,分子分母同乘以分母的共轭复数即可.
【详解】
由已知,,所以.
故选:B.
【点睛】
本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.
12、D
【解析】
通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.
【详解】
解:,正确;
,为奇函数,周期函数,正确;
,正确;
D: ,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;
且,,,故D错误.
故选:.
【点睛】
本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
采用列举法计算古典概型的概率.
【详解】
抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反),
在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.
故答案为:
【点睛】
本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.
14、
【解析】
构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.
【详解】
设,则,
设,则.
当时,,此时函数单调递减;当时,,此时函数单调递增.
所以,函数在处取得极小值,也是最小值,即,
,,,即,
所以,函数在上为增函数,
函数为上的奇函数,则,
,则不等式等价于,
又,解得.
因此,不等式的解集为.
故答案为:.
【点睛】
本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.
15、
【解析】
作出可行域,由得,平移直线,数形结合可求的最大值.
【详解】
作出可行域如图所示
由得,则是直线在轴上的截距.
平移直线,当直线经过可行域内的点时,最小,此时最大.
解方程组,得,.
.
故答案为:.
【点睛】
本题考查简单的线性规划,属于基础题.
16、
【解析】
根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.
【详解】
,,,
由得,,
由基本不等式可得,,
,,
,因此,的取值范围为.
故答案为:.
【点睛】
本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(I);(Ⅱ)
【解析】
(Ⅰ)设等差数列的公差为,则依题设.
由,可得.
由,得,可得.
所以.
可得.
(Ⅱ)设,则.
即,
可得,且.
所以,可知.
所以,
所以数列是首项为4,公比为2的等比数列.
所以前项和. 
考点:等差数列通项公式、用数列前项和求数列通项公式.
18、(1)证明见解析;(2)①;②.
【解析】
(1)设过的直线交抛物线于,,联立,利用直线的斜率公式和韦达定理表示出,化简即可;
(2)由(1)知点在轴上,故,设出直线方程,求出交点坐标,因为内心到三角形各边的距离相等且均为内切圆半径,列出方程组求解即可.
【详解】
(1)设过的直线交抛物线于,,
联立方程组,得:.
于是,有:

又,

(2)①由(1)知点在轴上,故,联立的直线方程:.
,又点在抛物线上,得,
又,

②由题得,
(解法一)
所以直线的方程为
(解法二)
设内切圆半径为,则.设直线的斜率为,则:
直线的方程为:代入直线的直线方程,
可得
于是有:
得,
又由(1)可设内切圆的圆心为则,
即:,解得:
所以,直线的方程为:.
【点睛】
本题主要考查了抛物线的性质,直线与抛物线相关的综合问题的求解,考查了学生的运算求解与逻辑推理能力.
19、(1);(2)见解析.
【解析】
(1)设切点坐标为,然后根据可解得实数的值;
(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.
【详解】
(1),,
设曲线与轴相切于点,则,
即,解得.
所以,当时,轴为曲线的切线;
(2)令,,
则,,由,得.
当时,,此时,函数为增函数;当时,,此时,函数为减函数.
,.
①当,即当时,函数有一个零点;
②当,即当时,函数有两个零点;
③当,即当时,函数有三个零点;
④当,即当时,函数有两个零点;
⑤当,即当时,函数只有一个零点.
综上所述,当或时,函数只有一个零点;
当或时,函数有两个零点;
当时,函数有三个零点.
【点睛】
本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题.
20、(1);(2)2.
【解析】
(1)利用的最小值为1,可得,,即可求椭圆的方程;
(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,.当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值.
【详解】
(1)设,则,,
,,
由题意得,,
椭圆的方程为;
(2)将直线的方程代入椭圆的方程中,
得.
由直线与椭圆仅有一个公共点知,,
化简得:.

设,,
当时,设直线的倾斜角为,
则,



∴当时,,,

当时,四边形是矩形,.
所以四边形面积的最大值为2.
【点睛】
本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.
21、(1)(2)证明见解析
【解析】
(1)依题意可得,考虑到,则有再分类讨论可得;
(2)要证明,即证,即证.利用基本不等式即可得证;
【详解】
解:(1)由及,得,
考虑到,则有,它可化为

即或
前者无解,后者的解集为,
综上,的取值范围是.
(2)要证明,即证,
由,得,即证.
因为(当且仅当,时取等号).
所以成立,
故成立.
【点睛】
本题考查分类讨论法解绝对值不等式,基本不等式的应用,属于中档题.
22、(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.
【解析】
(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;
(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;
(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.
【详解】
解:(Ⅰ) f(x)的定义域为(﹣1,+∞),,
当时,f′(x)<2,当时,f′(x)>2,
所以函数f(x)在上单调递减,在单调递增.
(Ⅱ)设,
则,
因为x≥2,故,
(ⅰ)当a≥1时,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)单调递减,
而g(2)=2,所以对所有的x≥2,g(x)≤2,即f(x)≤ax;
(ⅱ)当1<a<1时,2<1﹣a<1,若,则g′(x)>2,g(x)单调递增,
而g(2)=2,所以当时,g(x)>2,即f(x)>ax;
(ⅲ)当a≤1时,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)单调递增,
而g(2)=2,所以对所有的x>2,g(x)>2,即f(x)>ax;
综上,a的最小值为1.
(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an an+1,由a1=1得,an≠2,
所以,数列是以为首项,1为公差的等差数列,
故,,,

由(Ⅱ)知a=1时,,x>2,
即,x>2.
法一:令,得,

因为,
所以,
故.
法二:
下面用数学归纳法证明.
(1)当n=1时,令x=1代入,即得,不等式成立
(1)假设n=k(k∈N*,k≥1)时,不等式成立,
即,
则n=k+1时,,
令代入,


即:,
由(1)(1)可知不等式对任何n∈N*都成立.
故.
考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值; 3、数列的通项公式;4、数列的前项和;5、不等式的证明.

延伸阅读:

标签:

上一篇:2023年河南省郑州市高考数学三模试卷(理科)(含解析)

下一篇:江苏省东台市创新学校2023届高考数学押题试卷(含解析)