2022-2023湘教版七年级数学下册1.3二元一次方程组的应用达标练习(无答案)

湘教版七年级数学下册.3二元一次方程组的应用达标练习
一、单选题
1、我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A. B. C. D.
2、已知一个两位数,十位上的数字x比个位上的数字y大1,若互换个位与十位数字的位置,得到的新数比原数小9,求这个两位数所列出的方程组中,正确的是( )
A. B.
C. D.
3、如果方程组的解与方程组的解相同,则的值是( )
A.1 B.3 C.7 D.-3
4、利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是( )
A.73cm B.74cm C.75cm D.76cm
5、已知关于x,y的方程组 ,与,有相同的解,则a,b的值为( )
A. B. C. D.
6、某商场2020年的总利润为100万元,2021年的总收入比2020年增加10%,总支出比2020年减少5%,2021年的总利润为140万元,则2020年的总收入和总支出分别是( )
A.300万元,210万元 B.300万元,200万元
C.400万元,300万元 D.410万元,310万元
7、同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地(  )
A.120km B.140km C.160km D.180km
8、已知关于x、y的二元一次方程,当m每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( )
A. B. C. D.
二、填空题
1、如图,在3×3的网格内填写了一些数和代数式,已知各行各列及对角线上的三个数之和都相等,则的值为________.
2、五一期间,时代商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利20元,而按原售价的六折出售,将亏损60元,则该商品的原售价为_____.
3、春末夏初, 正是枇杷成熟之际, 某枇杷基地的枇杷大量成熟, 于是安排了 20 个工人分三个小组分别对 三种枇杷进行采摘, 每人每天固定只采摘同一品种的枇杷, 每天采摘 三种枇杷的时间之比为 , 采摘 三种枇杷的速度之比为 . 第一次采摘用了 5 天时间; 第二次采摘时, 从原来采摘 种枇杷的工人中抽调了部分工人加入采摘 种枇杷的小组中, 由于不熟悉 种枇杷采摘, 新加入的工人的采摘速度为原有采摘 种枇杷工人采摘速度的 , 第二次采摘也用了 5 天时间, 两次采摘的三种枇杷的总量比为 ;第三次采摘时,需要采摘的枇杷总量是前两次总量的和的 . 为了加快采摘速度,决定在第二次的采摘人员安排的基础上(此时第二次采摘时新加入 种枇杷采摘组的工人采摘速度和 种枇杷采摘组其他工人一样), 在总人数 20 人以外另再添加 人去采摘 种枇杷, 新加入的 人的采摘速度是原来采摘 种枇杷工人速度的 2 倍, 最终, 第 3 次用了整数天完成采摘任务. 则 的值至少为_____________.
4、金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是_______.
5、一次越野赛跑中,当小明跑了时,小刚跑了.此后两人分别以和匀速跑.又过小刚追上小明,时小刚到达终点,时小明到达终点.这次越野赛跑的全程为_______.
6、为积极响应教育部对中小学生实行“五项管理”之读物管理,某书店购进了大量的文史类、科普类、生活类读物,每类读物进价分别是12元,10元,8元.同类读物的标价相同,且科普类和生活类读物的标价一样,该书店对这三类读物全部打6折销售.若每类读物的销量相同,则书店不亏不赚,此时生活类读物利润率为.若文史类、科普类、生活类销量之比是,则书店销售这三类读物的总利润率为_____.(利润率)
三、解答题
1、已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案.
2、今年8月,受高温影响,重庆多地突发山火.“山火无情人有情”,多家企业积极履行社会责任,主动投身到防暑抗旱、森林防火工作中,合力共克时艰.某区工商联组织捐赠油锯和水基灭火器共2.5万个,总价值1080万元.已知油锯的售价为每个600元,水基灭火器的售价为每个180元.
(1)本次捐赠中,油锯和水基灭火器的数量分别为多少万个?(请列二元一次方程组解决该问题)
(2)某企业计划捐赠90个油锯、120个水基灭火器,在采购时,商家为驰援山火救援主动让利,将油锯的售价降低了,水基灭火器的售价降低了,最终该企业捐赠的这批物资总价为62400元,请求出的值.
3、2022年2月,全国爱卫会发布了关于2021年度国家卫生城镇复审结果的通报,驻马店市以优异成绩通过复审测评,再次被确认为“国家卫生城市”.在“创卫”过程中,有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成甲工程队每天整治8米,乙工程队每天整治12米,共用时20天.求甲、乙两工程队分别整治河道多少米.
(1)小明、小华两位同学提出的解题思路如下:
小明同学:
设整治任务完成后,甲工程队整治河道米,乙工程队整治河道米.
根据题意,得
小华同学:
设整治任务完成后,表示_________________,表示_________________.
根据题意,得:
请你补全小明、小华两位同学的解题思路.
(2)请从(1)中任选一个解题思路写出完整的解答过程.
4、某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]
A B
进价(万元/套) 1.5 1.2
售价(万元/套 1.65 1.4
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?
5、如果一个自然数N的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A的十位数字比B的十位数字大2,A、B的个位数字之和为10,则称数N为“美好数”,并把数N分解成的过程,称为“美好分解”.例如:∵,61的十位数字比49的十位数字大2,且61、49的个位数字之和为10,∴2989是“美好数”;又如:∵,35的十位数字比19的十位数字大2,但个位数字之和不等于10,∴605不是“美好数”.
(1)判断525,1148是否是“美好数”?并说明理由;
(2)把一个大于4000的四位“美好数”N进行“美好分解”,即分解成,A的各个数位数字之和的2倍与B的各个数位数字之和的和能被7整除,求出所有满足条件的N.
6、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.
(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?
(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.

延伸阅读:

标签:

上一篇:2023年浙江省中考数学一轮复习专题讲义练习12一次函数的应用与综合问题(含解析)

下一篇:2023年山东省聊城市 中考数学模拟试卷(无答案)