第六章 化学反应与能量 检测题
一、单选题
1.生命活动与化学反应息息相关,下列反应中能量变化与其他不同的是( )
①液态水变成水蒸气 ②酸碱中和反应 ③浓硫酸稀释 ④固体NaOH溶于水 ⑤H2在Cl2中燃烧 ⑥电离
A.②③④⑤ B.②③④ C.②⑤ D.①③⑤
2.下列关于化学反应中能量变化的说法正确的是
A.在常温下可以发生的反应一定是放热反应
B.放热反应为“贮存”能量的过程,吸热反应为“释放”能量的过程
C.断开化学键的过程是吸热过程
D.化学反应中能量变化的大小与反应物的质量多少无关
3.下列反应既属于氧化还原反应又属于放热反应的是
A.浓硫酸的稀释 B.与水反应
C.与反应 D.与反应
4.2019年诺贝尔化学奖授予美国固体物理学家约翰·巴尼斯特·古迪纳(John B. Goodenough)、英国化学家斯坦利·威廷汉(Stanley Whittingham)和日本化学家吉野彰(Akira Yoshino),以表彰他们发明锂离子电池方面做出的贡献。全固态锂硫电池能量密度高、成本低,其工作原理如图所示,其中电极a常用掺有石墨烯的S8材料,电池反应为:16Li+xS8=8Li2Sx(2≤x≤8)。下列说法错误的是( )
A.电池工作时,正极可发生反应:2Li2S6+2Li++2e-=3Li2S4
B.电池工作时,外电路中流过0.02mol电子,负极材料减重0.14g
C.石墨烯的作用主要是提高电极a的导电性
D.电池充电时间越长,电池中Li2S2的量越多
5.在常温、常压和光照条件下,N2在催化剂表面与H2O发生反应:2N2(g)+6H2O(l) =4NH3(g)+3O2(g)。在2 L的密闭容器中,起始反应物用量相同,催化剂的使用情况也相同,控制不同温度分别进行4组实验,3 h后测定NH3的生成量,所得数据如下表:
实验级别 实验1 实验2 实验3 实验4
温度/K 303 313 323 353
NH3生成量/10 6mol 4.8 5.9 6.0 2.0
下列说法不正确的是A.温度为303 K时,在3 h内用氮气表示的平均反应速率为4×10 7mol·L 1·h 1
B.实验1和实验3中,3 h内N2的转化率之比为4:5
C.分析四组实验数据可得出,温度升高可加快反应速率,也可能减慢反应速率
D.353 K时,可能是催化剂催化活性下降或部分水脱离催化剂表面,致使化学反应速率减慢
6.下列关于化学反应的速率和限度的说法不正确的是
A.任何可逆反应都有一定的限度
B.影响化学反应速率的条件有温度、催化剂、浓度等
C.化学平衡状态指的是反应物和生成物浓度相等时的状态
D.决定化学反应速率的主要因素是物质本身的性质
7.一定条件下存在反应:CO(g)+H2O(g)CO2(g)+H2(g),其正反应放热。现有三个相同的2L恒容绝热(与外界没有热量交换) 密闭容器Ⅰ、Ⅱ、Ⅲ,在Ⅰ中充入1mol CO和1mol H2O,在Ⅱ中充入1mol CO2 和1mol H2,在Ⅲ中充入2mol CO 和2mol H2O,700℃条件下开始反应。达到平衡时,下列说法正确的是
A.两容器中正反应速率:I<II
B.两容器中的平衡常数:I>II
C.容器Ⅰ 中CO2的物质的量比容器Ⅱ中CO2的少
D.容器Ⅰ 中CO 的转化率与容器II中CO2 的转化率之和大于1
8.下列变化一定为放热反应的是
A.碳酸钙分解 B.水蒸气液化 C.双氧水分解 D.氯化铵溶于水
9.一定温度下,在1L的密闭容器中,X、Y、Z三种气体的物质的量随时间变化的曲线如图所示:下列描述正确的是
A.反应开始到10s,用X表示的反应速率为0.158mol/(Ls)
B.反应开始到10s,X的物质的量浓度减少了0.395mol/L
C.反应的化学方程式为:X(g)+Y(g)Z(g)
D.反应开始到10s时,Y的转化率为79.0%
10.CO2(g)+3H2(g) CH3OH(g)+H2O(g)是CO2综合利用的一种方法。下列关于该反应的说法正确的是
A.升高温度能加快反应速率
B.催化剂对反应速率无影响
C.减小H2浓度能加快反应速率
D.达到化学平衡时,CO2能100%转化为CH3OH
11.在一定温度下的恒容密闭容器中,可逆反应N2 + 3H22NH3 达到平衡状态的标志是
A.N2、H2、NH3在容器中共存
B.混合气体的密度不再发生变化
C.混合气体的总物质的量不再发生变化
D.v正(N2)=2v逆(NH3)
12.下列化学反应属于吸热反应的是
A.碘的升华 B.氢氧化钙与氯化铵晶体混合
C.镁与稀盐酸反应 D.生石灰溶于水
13.下列说法中,不正确的是
A.“可燃冰”是天然气甲烷等的水合物,是一种可再生的能源
B.硝酸铵晶体溶于水会使溶液的温度降低
C.大自然利用太阳能最成功的是植物的光合作用
D.相同条件下,燃烧硫蒸气比燃烧硫固体放出更多的热量
14.目前认为酸催化乙烯水合制乙醇的反应机理及能量与反应进程的关系如图所示。下列说法错误的是
A.第②、③步反应均释放能量
B.该反应进程中有二个过渡态
C.酸催化剂能同时降低正、逆反应的活化能
D.总反应速率由第①步反应决定
二、填空题
15.化学反应的速率和限度对人类生产生活有重要的意义。
I.已知甲同学通过测定该反应发生时溶液变浑浊的时间,研究外界条件对化学反应速率的影响,设计实验如下:(所取溶液体积均为2mL)
实验编号 温度/℃
Ⅰ 25 0.1 0.1
Ⅱ 25 0.2 0.1
Ⅲ 50 0.2 0.1
(1)上述实验中溶液最先变浑浊的是_______。(填实验编号,下同)
(2)为探究浓度对化学反应速率的影响,应选择实验_______和_______。
Ⅱ.和之间发生反应:(无色)(红棕色),一定温度下,体积为2L的恒容密闭容器中,各物质的物质的量随时间变化的关系如图所示。请回答下列问题:
(3)若上述反应在甲、乙两个相同容器内同时进行,分别测得:甲中,乙中,则_______中反应更快。
(4)该反应达最大限度时Y的转化率为_______;若初始压强为P0,则平衡时P平=_______(用含P0的表达式表示)。
(5)下列描述能表示该反应达平衡状态的是_______。
A.容器中X与Y的物质的量相等
B.容器内气体的颜色不再改变
C.
D.容器内气体的密度不再发生变化
E.容器内气体的平均相对分子质量不再改变
16.Ⅰ.判断:
(1)下列化学(或离子)方程式正确且能设计成原电池的是_______(填字母,下同)。
A. B.
C. D.
Ⅱ.常温下,将除去表面氧化膜的Al、Cu片插入浓中组成原电池(图1),测得原电池的电流强度(I)随时间(t)的变化如图2所示。反应过程中有红棕色气体产生。
(2)O~t1时,原电池的负极是Al片,此时,正极的电极反应式是_______,溶液中的向_______移动(填“正极”或“负极”);t1时,原电池中电子流动方向发生改变,其原因是_______。
17.某温度时,在一个2L的密闭容器中,A、B、C三种气体物质的浓度随时间的变化曲线如图所示。
根据图中数据,试填写下列空白:
(1)该反应的化学方程式为_______;
(2)从开始至2min,B的平均反应速率为_______;平衡时,C的物质的量为_______;
(3)下列叙述能说明该反应已达到化学平衡状态的_______(填序号);
A.A、B、C的物质的量之比为3:1:3
B.相同时间内消耗3molA,同时生成3molC
C.相同时间内消耗,同时消耗
D.混合气体的总质量不随时间的变化而变化
E.B的体积分数不再发生变化
(4)在某一时刻采取下列措施能使该反应速率减小的是_______(填序号)。
A.加催化剂 B.降低温度
C.容积不变,充入A D.容积不变,从容器中分离出A
(5)某实验小组同学进行如下图所示实验,以检验化学反应中的能量变化。请根据你掌握的反应原理判断,②中的温度_______(填“升高”或“降低”)。反应过程_______(填“①”或“②”)的能量变化可用图表示。
18.燃料电池是一种具有应用前景的绿色电源。下图为燃料电池的结构示意图,电解质溶液为NaOH溶液,电极材料为疏松多孔的石墨棒。请回答下列问题:
(1)若该燃料电池为氢氧燃料电池。
①a极通入的物质为_______(填物质名称),电解质溶液中的OH-移向_______极(填”负”或“正”)。
②写出此氢氧燃料电池工作时,负极的电极反应式:_______。
(2)若该燃料电池为甲烷燃料电池。已知电池的总反应为CH4+2O2+2OH-=+3H2O
①下列有关说法正确的是_______(填字母代号)。
A.燃料电池将电能转变为化学能
B.负极的电极反应式为CH4+10OH--8e-=+7H2O
C.正极的电极反应式为O2+4H++4e-=2H2O
D.通入甲烷的电极发生氧化反应
②当消耗甲烷33.6L(标准状况下)时,假设电池的能量转化效率为80%,则导线中转移的电子的物质的量为___mol。
19.把0.5mol X气体和0.6mol Y气体混合于2L的恒容密闭容器中,使它们发生如下反应:4X(g)+5Y(g) nZ(g)+6W(g),2min末生成0.6mol W,若测知以Z的浓度变化表示的反应速率为0.05mol/(L·min),试计算:
(1)前2min内用X的浓度变化表示的平均反应速率为_______
(2)2min末时Y的浓度为_______
(3)2min末,恢复到反应前温度,体系内压强是反应前压强的_______倍
20.1843年伦敦泰晤士河隧道终于竣工,英国政界人物在隧道里举行了庆典。但带到隧道的香槟酒没有气泡使庆祝变得索然无味,当庆典过后,走出隧道的人们又有尴尬的事发生了:酒在肚子里发胀,酒气从鼻子、嘴里不断冒出来,有的人穿的马甲被胀开。请回答下列问题:
(1)香槟酒、啤酒、碳酸饮料在开瓶时会观察到有气泡冒出,请你写出与该现象有关的化学平衡方程式:_____。
(2)泰晤士河隧道竣工庆典的尴尬说明_____________________对化学平衡移动存在影响。
21.依据化学能与热能的相关知识回答下列问题:
Ⅰ.键能是指在25 ℃、101 kPa,将1 mol理想气体分子AB拆开为中性气态原子A和B时所需要的能量。显然键能越大,化学键越牢固,含有该键的分子越稳定。如H—H键的键能是436 kJ·mol-1,是指使1 mol H2分子变成2 mol H原子需要吸收436 kJ的能量。
(1)已知H-Cl键的键能为431 kJ·mol-1,下列叙述正确的是___________(填字母,下同)。
A.每生成1 mol H-Cl键放出431 kJ能量 B.每生成1 mol H-Cl键吸收431 kJ能量
C.每拆开1 mol H-Cl键放出431 kJ能量 D.每拆开1 mol H-Cl键吸收431 kJ能量
(2)已知键能:H-H键为436 kJ·mol-1;H-F键为565 kJ·mol-1;H-Cl键为431 kJ·mol-1;H-Br键为366 kJ·mol-1.则下列分子受热时最稳定的是___________。
A.HF B.HCl C.HBr D.H2
(3)能用键能大小解释的是___________。
A.氮气的化学性质比氧气稳定 B.常温常压下溴呈液态,碘呈固态
C.稀有气体一般很难发生化学反应 D.硝酸易挥发而硫酸难挥发
Ⅱ.已知化学反应N2+3H22NH3的能量变化如图所示,回答下列问题:
(1)1 mol N原子和3 mol H原子生成1 mol NH3(g)的过程___________(填“吸收”或“放出”)___________kJ能量。
(2)0.5 mol N2(g)和1.5 mol H2(g)生成1 mol NH3(g)的过程___________(填“吸收”或“放出”)___________kJ能量。
22.(1)一种熔融碳酸盐燃料电池原理示意如图所示。电池工作时,外电路上电流的方向应从电极_______(填A或B)流向用电器。内电路中,CO向电极_______(填A或B)移动,电极A上CO参与的电极反应为_______。
(2)某种燃料电池的工作原理示意如图所示,a、b均为惰性电极。
①假设使用的“燃料”是氢气(H2),则a极的电极反应式为_______。
若电池中氢气(H2)通入量为224 mL(标准状况),且反应完全,则理论上通过电流表的电量为_______C (法拉第常数F=9.65×104C/mol)。
②假设使用的“燃料”是甲醇(CH3OH),则a极的电极反应式为_______。
如果消耗甲醇160g,假设化学能完全转化为电能,则转移电子的数目为_______(用NA表示)。
23.I.一定温度下,在2L的密闭容器中,X、Y、Z三种气体的量随时间变化的曲线如图:
(1)从反应开始到10s时,用Z表示的反应速率为___________,X的物质的量浓度减少了___________,Y的转化率为___________。
(2)该反应的化学方程式为___________。
II.KI溶液在酸性条件下能与氧气反应。现有以下实验记录:回答下列问题:
实验编号 ① ② ③ ④ ⑤
温度/℃ 30 40 50 60 70
显色时间/s 160 80 40 20 10
(1)该反应的离子方程式为___________。
(2)该实验的目的是探究___________。
(3)实验试剂除了1mol·L-1KI溶液、0.1mol·L-1H2SO4溶液外,还需要的试剂是__;
(4)上述实验操作中除了需要(3)的条件外,还必须控制不变的是___________(填字母)。
A.温度 B.试剂的浓度
C.试剂的用量(体积) D.试剂添加的顺序
24.H2(g)+ I2(g) 2HI(g)已经达到平衡状态的标志是________(填序号)。
①
②
③、、不再随时间而改变
④单位时间内生成的同时生成
⑤单位时间内生成的同时生成
⑥反应速率
⑦一个键断裂的同时有两个键断裂
⑧温度和体积一定时,容器内压强不再变化
⑨温度和体积一定时,混合气体的颜色不再变化
⑩温度和压强一定时,混合气体的密度不再变化
温度和体积一定时,混合气体的平均相对分子质量不再变化
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.C
【详解】①液态水变成水蒸气吸收热量,是物质状态的变化,没有新物质生成,发生的是物理变化;
②酸碱中和反应放出热量,有新的物质生成,发生的是化学变化,能量变化是化学能转化为热能;
③浓硫酸稀释放出热量,是物质的溶解过程,没有新的物质产生;
④固体NaOH溶于水放出热量,是物质的溶解过程,在过程中没有新物质产生;
⑤H2在Cl2中燃烧放出热量,发生了化学变化,有新物质产生,化学能转化为热能;
⑥电离过程吸收能量,是电解质变为自由移动的离子的过程,变化时没有新物质产生;
可见②⑤能量变化时发生化学反应,①③④能量变化时没有新物质产生,故合理选项是C。
2.C
【详解】A.在常温下可以发生的反应不一定是放热反应,如氢氧化钡晶体和氯化铵反应吸热,在常温下能发生,故A错误;
B.放热反应为“释放”能量的过程,吸热反应为“储存”能量的过程,故B错误;
C.断开化学键的过程是吸热过程,形成化学键的过程放热,故C正确;
D.化学反应中能量变化的大小与反应物的质量多少成正比例关系,故D错误;
选C。
3.B
【详解】A.浓硫酸的稀释,不是化学反应,不属于氧化还原反应,该过程放出热量, A不符合题意;
B.与水反应生成NaOH和H2,属于氧化还原反应,同时放出大量的热,属于放热反应,B符合题意;
C.与反应属于复分解反应,反应过程吸收热量,不属于放热反应,C不符合题意;
D.C与反应生成CO,该反应属于氧化还原反应,反应过程吸收热量,不属于放热反应,D不符合题意;
故选B。
4.D
【分析】电池反应为:16Li+xS8=8Li2Sx(2≤x≤8),电池负极的方程式为16Li-16e-=16Li+,根据图示,正极发生一系列的反应,随着反应的进行,转移的电子越多,S的化合价越低,在Li2S8中,S的化合价为,Li2S2中S的化合价为-1,则在负极Li2Sx中x得值越来越小。
【详解】A、根据图示和分析,正极发生了一系列反应,包括了2Li2S6+2Li++2e-=3Li2S4,A正确,不符合题意;
B、电池的负极发生反应Li-e-=Li+,转移0.02mol电子,则有0.02molLi转化为Li+,电极材料损失0.02mol×7g/mol=0.14g,B正确,不符合题意;
C、石墨可以导电,增加电极的导电性,C正确,不符合题意;
D、根据分析,放电过程中Li2S8会转化为Li2S2,则充电过程中Li2S2会转化为Li2S8,Li2S2的量会越来越少,D错误,符合题意;
答案选D。
5.C
【分析】A项,先计算NH3表示的平均反应速率,再依据速率之比等于化学计量数之比计算υ(N2);B项,根据实验1和实验3中NH3的生成量计算;C项,其它条件相同时升高温度化学反应速率加快;D项,353K时,温度升高化学反应速率减慢,可能是温度升高催化剂活性下降或部分水脱离催化剂表面。
【详解】A.303K时υ(NH3)===810-7mol/(L·h),根据速率之比等于化学计量数之比,υ(N2):υ(NH3)=2:4,υ(N2)=υ(NH3)=410-7mol/(L·h),A项正确;
B.根据实验1和实验3中3h内NH3的生成量之比为(4.810-6mol):(6.010-6mol)=4:5,实验1和实验3中转化N2物质的量之比为4:5,起始反应物用量相同,实验1和实验3中3h内N2的转化率之比为4:5,B项正确;
C.其它条件相同时升高温度化学反应速率加快,353K时,温度升高化学反应速率减慢,可能是温度升高催化剂活性下降或部分水脱离催化剂表面,C项错误;
D.353K时,化学反应速率减慢,可能是温度升高催化剂活性下降或部分水脱离催化剂表面,D项正确;
答案选C。
6.C
【详解】A.任何可逆反应都有一定的限度,符合可逆反应的规律,故A正确;
B. 影响化学反应速率的条件有温度、催化剂、浓度等,符合影响反应速率的因素,故B正确;
C. 化学平衡状态指的是反应物和生成物浓度不再变化时的状态,而不一定是相等的状态,故C错误;
D. 决定化学反应速率的主要因素是物质本身的性质(内因),符合影响反应速率的因素,故D正确。
答案选C。
7.C
【详解】A.若两容器保持恒温,则为等效平衡,正反应速率相等,现为恒容绝热容器,I中温度升高,II中温度降低,所以达平衡时,混合气体的温度I比II高,正反应速率:I>II,A不正确;
B.由A中分析可知,达平衡时容器I的温度比II高,由于正反应为放热反应,温度越高平衡常数越小,所以两容器中的平衡常数:I<II,B不正确;
C.若温度不变,容器I和容器II中CO2的物质的量相等,现达平衡时,容器I的温度比II高,升温时平衡逆向移动,所以容器Ⅰ中CO2的物质的量比容器Ⅱ中CO2的少,C正确;
D.若温度不变,容器I和容器II为等效平衡,则此时容器Ⅰ中CO 的转化率与容器II中CO2 的转化率之和等于1,现容器II的温度比容器I低,相当于容器I降温,平衡正向移动,容器II中CO2的转化率减小,所以容器Ⅰ 中CO 的转化率与容器II中CO2 的转化率之和小于1,D不正确;
故选C。
8.C
【分析】根据常见的放热反应有:所有的物质燃烧、所有金属与酸反应、金属与水反应,所有中和反应;绝大多数化合反应和铝热反应;常见的吸热反应有:绝大数分解反应,个别的化合反应(如C和CO2),少数分解置换以及某些复分解(如铵盐和强碱),C或氢气做还原剂时的反应。
【详解】A.碳酸钙高温分解成氧化钙和二氧化碳的反应是吸热反应,故A错误;
B.水蒸气液化是放热过程,不是放热反应,故B错误;
C.双氧水分解是放热反应,故C正确;
D.氯化铵溶于水属于物理变化过程,故D错误;
故选:C。
9.D
【详解】A.由图可知,反应开始到10s,用X表示的反应速率为mol/(L s),A错误;
B.由图可知,反应开始到10s,X的物质的量浓度减少了(1.00-0.21)mol÷1L=0.79mol/L,B错误;
C.根据化学反应进行时,物质的量之比等于化学计量数之比,由图可知,10s内X变化了1.20-0.42=0.78mol,Y变化了:1.00-0.21=0.79mol,Z变化了1.58mol,故反应的化学方程式为:X(g)+Y(g)2Z(g),C错误;
D.由图可知,反应开始到10s时,Y的转化率为=79.0%,D正确;
故答案为:D。
10.A
【详解】A.升高温度能增大活化分子百分数,温度越高反应的速率越快,所以适当升温能加快反应速率,A正确;
B.使用催化剂能降低反应的活化能,能加快化学反应的速率,所以催化剂对反应速率有影响,B错误;
C.反应物浓度降低,反应速率减慢,C错误;
D.反应是可逆反应,反应物不能完全转化为生成物,所以达到平衡时,CO2不可能100%转化为CH3OH,D错误;
故合理选项是A。
11.C
【分析】N2 + 3H22NH3为气体体积缩小的可逆反应,该反应达到平衡状态时,正逆反应速率相等,各组分的浓度、百分含量等变量不再变化,据此判断。
【详解】A.该反应为可逆反应,所以N2、H2、NH3在容器中共存,无法判断是否达到平衡状态,故A错误;
B.反应前后混合气体的质量和容器容积均不变,因此密度始终不变,不能据此判断是否达到平衡状态,故B错误;
C.该反应为气体体积缩小的反应,平衡前气体的总物质的量为变量,当混合气体的总物质的量不再发生变化时,说明正逆反应速率相等,达到平衡状态,故C正确;
D.v正(N2)=2v逆(NH3),速率之比不等于系数之比,说明正逆反应速率不相等,没有达到平衡状态,故D错误;
故选C。
12.B
【解析】常见的放热反应有:所有的物质燃烧、所有金属与酸反应、金属与水反应、所有中和反应、绝大多数化合反应和铝热反应;
常见的吸热反应有:绝大数分解反应、个别的化合反应(如C和CO2)、少数分解、置换以及某些复分解反应。
【详解】A.碘的升华是碘受热由固态直接变为气态,属于物理变化,选项A错误;
B.氢氧化钙与氯化铵晶体混合反应后吸收能量使温度降低,该反应是吸热反应,选项B正确;
C.镁与稀盐酸反应是置换反应,反应放出大量的热,属于放热反应,选项C错误;
D.生石灰溶于水反应生成氢氧化钙,反应放出热量,该属于放热反应,选项D错误;
答案选B。
【点睛】本题考查了反应是放热反应还是吸热反应类型的判断的知识,掌握常见的放热反应、吸热反应有哪些是本题解答的关键,注意碘的升华属于物理变化。
13.A
【详解】A. “可燃冰”是一种不可再生的能源,故A错误;
B. 硝酸铵晶体溶于水是吸热过程,会使溶液的温度降低,故B正确;
C. 植物通过光合作用将二氧化碳和水合成为葡萄糖,是利用太阳能最成功的例子,故C正确;
D. 硫固体转化为硫蒸气需要吸收热量,则相同条件下,燃烧硫蒸气比燃烧硫固体放出更多的热量,故D正确。
14.B
【详解】A. 根据反应历程,结合图可知,第②③步均为反应物总能量高于生成物的总能量,为放热反应,选项A正确;
B. 根据过渡态理论,反应物转化为生成物的过程中要经过能量较高的过渡态,由图可知,该反应进程中有三个过渡态,选项B错误;
C. 酸催化剂能同时降低正、逆反应的活化能,选项C正确;
D. 活化能越大,反应速率越慢,决定这总反应的反应速率,由图可知,第①步反应的活化能最大,总反应速率由第①步反应决定,选项D正确;
答案选B。
15.(1)III
(2) I II
(3)甲
(4) 60% P0
(5)BE
【解析】(1)
三次实验中所用H2SO4溶液的浓度相同;实验I和实验II中温度相同,实验II中Na2S2O3溶液的浓度是实验I的两倍,在其他条件相同时,增大反应物的浓度化学反应速率加快,实验II比实验I快;实验II和实验III中所用Na2S2O3溶液、H2SO4溶液的浓度相同,实验III的温度比实验II高,在其他条件相同时,升高温度化学反应速率加快,实验III比实验II快;故反应速率最快的是实验III,即最先变浑浊的是实验III;答案为:III。
(2)
为探究浓度对化学反应速率的影响,应控制温度等其他条件相同,只改变反应物的浓度,故选择实验I和II;答案为:I;II。
(3)
甲中;乙中,同一反应同一时间段内用不同物质表示的化学反应速率之比等于化学计量数之比,则乙中<,甲中反应更快;答案为:甲。
(4)
X、Y起始物质的量依次为0.4mol、1mol,该反应达最大限度时X、Y的物质的量依次为0.7mol、0.4mol,从起始到平衡,Y物质的量减少0.6mol,X物质的量增加0.3mol,则Y代表NO2,X代表N2O4;该反应达最大限度时Y的转化率为=60%;起始气体总物质的量为1.4mol,平衡气体总物质的量为1.1mol,恒温恒容时气体的压强之比等于气体物质的量之比,P0:P平=1.4mol:1.1mol,P平=P0;答案为:60%;P0。
(5)
A.达到平衡时各物质物质的量保持不变,但不一定相等,容器中X与Y物质的量相等不能说明反应达到平衡状态,A不选;
B.N2O4为无色,NO2为红棕色,容器内气体的颜色不再变化,说明NO2的浓度不再变化,能说明反应达到平衡状态,B选;
C.没有指明是正反应速率、还是逆反应速率,不能说明反应达到平衡状态,C不选;
D.该反应中所有物质都呈气态,建立平衡的过程中混合气体的总质量始终不变,恒容容器的容积不变,混合气体的密度始终不变,容器内气体的密度不再发生变化不能说明反应达到平衡状态,D不选;
E.该反应的正反应是气体分子数增大的反应,该反应中所有物质都呈气态,建立平衡的过程中混合气体的总质量始终不变,混合气体的总物质的量变化,混合气体的平均相对分子质量变化,容器内气体的平均相对分子质量不再改变能说明反应达到平衡状态,E选;
答案选BE。
16.(1)D
(2) 正极 Al在浓硝酸中发生钝化,形成的氧化膜阻止了Al进一步反应
【解析】(1)
原电池是将化学能转变为电能的装置,只有氧化还原反应才有电子的转移,才能形成原电池,B、D为氧化还原反应,但选项B的化学方程式未配平,A、C为非氧化还原反应,不可以设计成原电池,故答案为:D;
(2)
O~t1时,Al在浓硝酸中发生钝化过程,Al为负极,铜为正极,溶液中的硝酸根离子得到电子,正极电极反应式为:,原电池中阳离子向正极移动,则溶液中的H+向正极移动;由于随着反应进行铝表面钝化形成氧化膜阻碍反应进行,t1时,铜做负极反应,Al为正极,因此电流方向发生改变。
17.(1)3A(g)B(g) + 3C(g)
(2) 0.2 mol L 1 min 1 2.4mol
(3)CE
(4)BD
(5) 降低 ①
【解析】(1)
根据图中曲线,A不断消耗,说明A为反应物,B、C不断增加,说明B、C是生成物,A、B、C该变量分别为1.2 mol L 1、0.4 mol L 1、1.2 mol L 1,则该反应的化学方程式为3A(g)B(g) + 3C(g);故答案为:3A(g)B(g) + 3C(g)。
(2)
从开始至2min,B的平均反应速率为;平衡时,C的物质的量为1.2 mol L 1×2L=2.4mol;故答案为:0.2 mol L 1 min 1;2.4mol。
(3)
A.A、B、C的物质的量之比为3:1:3,不能说明是否达到平衡,只能说各物质的量不再改变,故A不符合题意;B.相同时间内消耗3molA,正向反应,同时生成3molC,正向反应,同一个方向,不能说明达到平衡,故B不符合题意;C.相同时间内消耗,正向反应,同时消耗,逆向反应,消耗之比等于计量系数之比,因此能作为判断平衡标志,故C符合题意;D.气体总质量始终不变,当混合气体的总质量不随时间的变化而变化,不能作为判断平衡标志,故D不符合题意;E.正向反应,B的体积分数不断减小,当B的体积分数不再发生变化,则达到平衡,故E符合题意;综上所述,答案为:CE。
(4)
A.加催化剂,反应速率加快,故A不符合题意;B.降低温度,反应速率降低,故B符合题意;C.容积不变,充入A,A的物质的量浓度增大,反应速率加快,故C不符合题意;D.容积不变,从容器中分离出A,A的物质的量浓度减小,反应速率减小,故D符合题意;综上所述,答案为:BD。
(5)
根据反应能量变化分析①为放热反应,②为吸热反应,因此②中的温度降低,该热量变化图为放热反应,因此反应过程①的能量变化可用图表示;故答案为:降低;①。
18. 氢气 负 H2-2e-+2OH-=2H2O BD 9.6
【详解】(1)①氢氧燃料电池中通入氢气的电极为负极、通入氧气的电极为正极,根据电子移动方向知,a为负极、b为正极,所以a通入的物质是氢气,放电时溶液中阴离子向负极移动,所以电解质溶液中的OH-移向负极,故答案为:氢气;负;
②该燃料电池中,负极上氢气失电子和氢氧根离子反应生成水,电极反应式为H2-2e-+2OH-=2H2O,故答案为:H2-2e-+2OH-=2H2O;
(2)①A.燃料电池是原电池,是将化学能转化为电能的装置,故A错误;
B.负极上甲烷失电子和氢氧根离子反应生成碳酸根离子和水,电极反应式为CH4+10OH--8e-=+7H2O,故B正确;
C.正极上氧气得电子和水反应生成氢氧根离子,电极反应式为O2+2H2O+4e-=4OH-,故B错误;
D.通入甲烷的电极失电子发生氧化反应,故D正确;
故选BD;
②n(CH4)=33.6L÷22.4L/mol=1.5mol,消耗1mol甲烷转移8mol电子,则消耗1.5mol甲烷转移电子物质的量=1.5mol×8=12mol,假设电池的能量转化效率为80%,则转移电子的物质的量=12mol×80%=9.6mol,故答案为:9.6。
19. 0.1mol/(L.min) 0.05mol/L 10/11
【详解】列三段式:,
(1)前2min内用X的浓度变化表示的平均反应速率为v(X)= c/ t=0.2/2 mol/(L.min)=0.1mol/(L.min);
(2)2min末时Y的浓度为0.05mol/L;
(3) 以Z的浓度变化表示的反应速率为0.05mol/(L·min),则 c= v t=0.05mol/(L·min)×2min=0.1mol/L,即0.1=0.1n/2,解得n=2,2min末时,c(Z)= 0.1mol/L,反应后总的物质的量(0.05+0.05+0.1+0.3)mol/L×2L=1.0mol,反应前总物质的量0.5+0.6=1.1mol,恢复到反应前温度,体系内压强是反应前压强的10/11。
20. 压强
【分析】香槟酒、啤酒、碳酸饮料中溶解CO2,存在平衡。
【详解】(1)香槟酒、啤酒、碳酸饮料在开瓶时溶解的H2CO3,受到压强减小的影响, 平衡正向移动,产生CO2,从而产生气泡。
(2)隧道内压强大,故香槟酒开瓶没有气泡,但出隧道后,压强减小,反应平衡正向移动,CO2逸出,故产生了泰晤士河隧道竣工庆典的尴尬。
21. AD A A 放出 b 放出 b-a
【详解】Ⅰ.(1)已知H-Cl键的键能为431 kJ·mol-1,表示1 mol 气态H 原子与1 mol气态 Cl原子结合生成1 mol H-Cl键时会放出431 kJ的热量,或拆开1 mol H-Cl键形成1 mol H原子和1 mol的Cl原子吸收431 kJ的热量,故合理选项是AD;
(2)根据已知条件可知键能由大到小顺序为:H-F>H-H>H-Cl>H-Br,物质内含有的化学键的键能越大,断裂该化学键吸收能量越高,含有该化学键的物质就越稳定。由于H-F的键能最大,故物质受热分解时,最稳定的物质是HF,因此合理选项是A;
(3) A.氮气的化学性质比氧气稳定是由于N2中2个N原子通过3个共价键结合,O2中2个O原子通过2个共价键结合,由于N≡N的键能比O=O的键能大,断裂消耗能量更高,因此N2比O2稳定,A符合题意;
B.单质溴、单质碘都是由双原子分子构成的物质,分子之间通过分子间作用力结合。分子间作用力越大,克服分子间作用力使物质融化、气化消耗的能量就越高,物质的熔沸点就越高。由于分子间作用力:I2>Br2,所以常温常压下溴呈液态,碘呈固态,与分子内化学键的强弱及键能大小无关,B不符合题意;
C.稀有气体一般很难发生化学反应是由于稀有气体是单原子分子,分子中不存在化学键,原子本身已经达到最外层2个或8个电子的稳定结构,与化学键的键能大小无关,C不符合题意;
D.硝酸易挥发而硫酸难挥发是由于HNO3、H2SO4都是由分子构成的物质,由于分子间作用力:HNO3<H2SO4,所以物质的熔沸点:HNO3<H2SO4,因此硝酸易挥发而硫酸难挥发,与分子内化学键的强弱及键能大小无关,D不符合题意;
故合理选项是A;
Ⅱ.(1)根据图示可知1 mol N原子和3 mol H原子的能量比1 mol NH3的能量高b kJ,所以由1 mol N原子和3 mol H原子生成1 mol NH3(g)的过程会放出b kJ的热量;
(2)根据图示可知0.5 mol N2(g)和1.5 mol H2(g)的能量比1 mol NH3(g)的能量高(b-a)kJ,因此当0.5 mol N2(g)和1.5 mol H2(g)发生反应生成1 mol NH3(g)时会将多余的能量释放出来,反应过程放出热量为(b-a) kJ。
22. B A CO-2e-+CO=2CO2 H2-2e-+2OH-=2H2O 1.93×103 CH3OH-6e-+8OH-=CO+6H2O 30NA
【分析】
分析熔融碳酸盐燃料电池原理示意图,通入氧气的一端为原电池正极,通入一氧化碳和氢气的一端为负极,电流从正极流向负极,溶液中阴离子移向负极,A电极上一氧化碳失电子发生氧化反应生成二氧化碳;根据某种燃料电池的工作原理示意,由电子转移方向可知a为负极,发生氧化反应,应通入燃料,b为正极,发生还原反应,应通入空气。
【详解】
(1)分析熔融碳酸盐燃料电池原理示意图,通入O2的B电极为原电池正极,通入CO和H2的电极为负极,电流从正极流向负极,电池工作时,外电路上电流的方向应从电极B(填A或B)流向用电器。内电路中,溶液中阴离子移向负极,CO向电极A(填A或B)移动,电极A上CO失电子发生氧化反应生成CO2,CO参与的电极反应为CO-2e-+CO=2CO2。故答案为:B;A;CO-2e-+CO=2CO2;
(2)①由分析a为负极,假设使用的“燃料”是氢气(H2),a极上氢气失电子,发生氧化反应,则a极的电极反应式为H2-2e-+2OH-=2H2O。若电池中氢气(H2)通入量为224 mL(标准状况),且反应完全,n(H2)= =0.01mol,则理论上通过电流表的电量为Q=9.65×104C/mol×0.01mol=1.93×103C (法拉第常数F=9.65×104C/mol)。故答案为:H2-2e-+2OH-=2H2O;1.93×103;
②假设使用的“燃料”是甲醇(CH3OH),a极上甲醇失电子,发生氧化反应,则a极的电极反应式为CH3OH-6e-+8OH-=CO+6H2O。 如果消耗甲醇160g,假设化学能完全转化为电能,则转移电子的数目为= =30NA。故答案为:CH3OH-6e-+8OH-=CO+6H2O;30NA。
23. 0.079mol·L-1·s-1 0.395mol·L-1 79.0% X(g)+Y(g)2Z(g) 4H++4I-+O2=2I2+2H2O 温度对反应速率的影响 淀粉溶液 CD
【详解】(1)10s时,Z的物质的量增加1.58mol,其反应速率为: mol·L-1·s-1,X的物质的量由1.20降低到0.41,其浓度较少量为:=0.395mol·L-1,Y的物质的量由1.0减少为0.21,其转化率为:,故答案为:0.079mol·L-1·s-1;0.395mol·L-1;79.0%;
(2)由图可知X、Y为反应物,Z为生成物,三者的变化分别为:0.79、0.79、1.58,变化量之比为1:1:2,可得反应方程式为:X(g)+Y(g)2Z(g),故答案为:X(g)+Y(g)2Z(g)
;
II.(1)KI具有强的还原性,能被氧气氧化成碘单质,反应的离子方程式为:4H++4I-+O2=2I2+2H2O,故答案为:4H++4I-+O2=2I2+2H2O;
(2)由表格数据可知,该实验改变的外界条件是温度,测量的是不同温度条件下显色的时间,可知其其探究的是温度对反应速率的影响,故答案为:温度对反应速率的影响;
(3)为确定显示的时间,需要用到指示剂与碘单质出现显色,结合碘单质的性质可知应用淀粉溶液作指示剂,故答案为:淀粉溶液;
(4)设计实验必须保证其他条件不变,只改变一个条件,才能得到准确的结论,而浓度条件在(3)已经控制一致,因此还必须控制不变的是试剂的量和试剂的添加顺序,故答案为:CD;
24.③④⑦⑨
【详解】①,无法判断各组分的浓度是否继续变化,则无法判断平衡状态,故①错误;
②,无法判断各组分的浓度是否继续变化,无法判断是否达到平衡状态,故②错误;
③、、不再随时间而改变,说明正逆反应速率相等,该反应达到平衡状态,故③正确;
④单位时间内生成的同时生成,说明正逆反应速率相等,该反应达到平衡状态,故④正确;
⑤单位时间内生成的同时生成,表示的都是逆反应速率,无法判断正逆反应速率的关系,故⑤错误;
⑥反应速率,没有正逆反应速率,则无法判断平衡状态,故⑥错误;
⑦一个H H键断裂的同时有两个H I键断裂,表明正逆反应速率相等,该反应达到平衡状态,故⑦正确;
⑧该反应为气体体积不变的反应,压强始终不变,不能根据压强判断平衡状态,故⑧错误;
⑨温度和体积一定时混合气体的颜色不再变化,说明正逆反应速率相等,该反应达到平衡状态,故⑨正确;
⑩气体总质量不变、容器容积不变,密度为定值,故⑩错误;
该反应前后气体质量不变,气体总物质的量不变,则气体的平均摩尔质量为定值,不能据此判断平衡状态,故 错误;
综上已经达到平衡状态的标志是③④⑦⑨,故答案为:③④⑦⑨。
答案第1页,共2页
答案第1页,共2页