2023年山东省泰安市岱岳区数学中考第一轮复习二次函数代几综合题(无答案)

2023年泰安市岱岳区中考第一轮复习
二次函数代几综合题
一、线段周长问题
1.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求△PAD周长的最小值.
2.如图,在平面直角坐标系中,过点、两点的抛物线的顶点C在x轴正半轴上.
(1)求抛物线的解析式;
(2)求点C的坐标;
(3)为线段AB上一点,,作轴交抛物线于点M,求PM的最大值与最小值.
二、倍面积问题
3.如图,在平面直角坐标系中,抛物线(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
4.如图,点在函数的图像上.已知的横坐标分别为-2、4,直线与轴交于点,连接.
(1)求直线的函数表达式;
(2)求的面积;
(3)若函数的图像上存在点,使得的面积等于的面积的一半,则这样的点共有___________个.
三、角度问题
5.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.
(1)试求抛物线的解析式;
(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
6.如图,抛物线经过,两点,与y轴交于点C,P为第四象限内抛物线上一点,过点P作PM⊥x轴于点M,连接AC,AP,AP与y轴交于点D.
(1)求抛物线的函数表达式.
(2)当∠MPA=2∠PAC时,求直线AP的函数表达式.
四、找点构成特殊三角形
7.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
8.如图,抛物线y=ax2x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(﹣1,0),且抛物线经过点D(2,﹣2).
(1)求抛物线的解析式;
(2)若点E是抛物线上位于x轴下方的一点,且S△ACES△ABC,求E的坐标;
(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.
五、找点构成特殊四边形
9.若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
(1)求二次函数的表达式;
(2)若点M在直线上,且在第四象限,过点M作轴于点N.
①若点N在线段上,且,求点M的坐标;
②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
10.已知,如图抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为,.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形AOCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
六、找点构成相似三角形
11.如图,在平面直角坐标系中,抛物线与x轴交于点,与y轴交于点C,且直线过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段上一动点,过点P作x轴的垂线交抛物线于点M,交直线于点N.
(1)求抛物线的函数解析式;
(2)当的面积最大时,求点P的坐标;
(3)在(2)的条件下,在y轴上是否存在点Q,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.

延伸阅读:

标签:

上一篇:浙教版2022-2023七下数学第三章 整式的乘除 培优测试卷(原卷版+解析版)

下一篇:人教版七年级下册5.1.3同位角内错角同旁内角同步练习(无答案)